LCOV - code coverage report
Current view: top level - journal - fsprg.c (source / functions) Hit Total Coverage
Test: main_coverage.info Lines: 0 214 0.0 %
Date: 2019-08-22 15:41:25 Functions: 0 21 0.0 %

          Line data    Source code
       1             : /* SPDX-License-Identifier: LGPL-2.1+
       2             :  *
       3             :  * fsprg v0.1  -  (seekable) forward-secure pseudorandom generator
       4             :  * Copyright © 2012 B. Poettering
       5             :  * Contact: fsprg@point-at-infinity.org
       6             :  *
       7             :  * This library is free software; you can redistribute it and/or
       8             :  * modify it under the terms of the GNU Lesser General Public
       9             :  * License as published by the Free Software Foundation; either
      10             :  * version 2.1 of the License, or (at your option) any later version.
      11             :  *
      12             :  * This library is distributed in the hope that it will be useful,
      13             :  * but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
      15             :  * Lesser General Public License for more details.
      16             :  *
      17             :  * You should have received a copy of the GNU Lesser General Public
      18             :  * License along with this library; if not, write to the Free Software
      19             :  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
      20             :  * 02110-1301  USA
      21             :  */
      22             : 
      23             : /*
      24             :  * See "Practical Secure Logging: Seekable Sequential Key Generators"
      25             :  * by G. A. Marson, B. Poettering for details:
      26             :  *
      27             :  * http://eprint.iacr.org/2013/397
      28             :  */
      29             : 
      30             : #include <gcrypt.h>
      31             : #include <string.h>
      32             : 
      33             : #include "fsprg.h"
      34             : #include "gcrypt-util.h"
      35             : #include "memory-util.h"
      36             : 
      37             : #define ISVALID_SECPAR(secpar) (((secpar) % 16 == 0) && ((secpar) >= 16) && ((secpar) <= 16384))
      38             : #define VALIDATE_SECPAR(secpar) assert(ISVALID_SECPAR(secpar));
      39             : 
      40             : #define RND_HASH GCRY_MD_SHA256
      41             : #define RND_GEN_P 0x01
      42             : #define RND_GEN_Q 0x02
      43             : #define RND_GEN_X 0x03
      44             : 
      45             : #pragma GCC diagnostic ignored "-Wpointer-arith"
      46             : /* TODO: remove void* arithmetic and this work-around */
      47             : 
      48             : /******************************************************************************/
      49             : 
      50           0 : static void mpi_export(void *buf, size_t buflen, const gcry_mpi_t x) {
      51             :         unsigned len;
      52             :         size_t nwritten;
      53             : 
      54           0 :         assert(gcry_mpi_cmp_ui(x, 0) >= 0);
      55           0 :         len = (gcry_mpi_get_nbits(x) + 7) / 8;
      56           0 :         assert(len <= buflen);
      57           0 :         memzero(buf, buflen);
      58           0 :         gcry_mpi_print(GCRYMPI_FMT_USG, buf + (buflen - len), len, &nwritten, x);
      59           0 :         assert(nwritten == len);
      60           0 : }
      61             : 
      62           0 : static gcry_mpi_t mpi_import(const void *buf, size_t buflen) {
      63             :         gcry_mpi_t h;
      64             :         unsigned len;
      65             : 
      66           0 :         assert_se(gcry_mpi_scan(&h, GCRYMPI_FMT_USG, buf, buflen, NULL) == 0);
      67           0 :         len = (gcry_mpi_get_nbits(h) + 7) / 8;
      68           0 :         assert(len <= buflen);
      69           0 :         assert(gcry_mpi_cmp_ui(h, 0) >= 0);
      70             : 
      71           0 :         return h;
      72             : }
      73             : 
      74           0 : static void uint64_export(void *buf, size_t buflen, uint64_t x) {
      75           0 :         assert(buflen == 8);
      76           0 :         ((uint8_t*) buf)[0] = (x >> 56) & 0xff;
      77           0 :         ((uint8_t*) buf)[1] = (x >> 48) & 0xff;
      78           0 :         ((uint8_t*) buf)[2] = (x >> 40) & 0xff;
      79           0 :         ((uint8_t*) buf)[3] = (x >> 32) & 0xff;
      80           0 :         ((uint8_t*) buf)[4] = (x >> 24) & 0xff;
      81           0 :         ((uint8_t*) buf)[5] = (x >> 16) & 0xff;
      82           0 :         ((uint8_t*) buf)[6] = (x >>  8) & 0xff;
      83           0 :         ((uint8_t*) buf)[7] = (x >>  0) & 0xff;
      84           0 : }
      85             : 
      86           0 : _pure_ static uint64_t uint64_import(const void *buf, size_t buflen) {
      87           0 :         assert(buflen == 8);
      88             :         return
      89           0 :                 (uint64_t)(((uint8_t*) buf)[0]) << 56 |
      90           0 :                 (uint64_t)(((uint8_t*) buf)[1]) << 48 |
      91           0 :                 (uint64_t)(((uint8_t*) buf)[2]) << 40 |
      92           0 :                 (uint64_t)(((uint8_t*) buf)[3]) << 32 |
      93           0 :                 (uint64_t)(((uint8_t*) buf)[4]) << 24 |
      94           0 :                 (uint64_t)(((uint8_t*) buf)[5]) << 16 |
      95           0 :                 (uint64_t)(((uint8_t*) buf)[6]) <<  8 |
      96           0 :                 (uint64_t)(((uint8_t*) buf)[7]) <<  0;
      97             : }
      98             : 
      99             : /* deterministically generate from seed/idx a string of buflen pseudorandom bytes */
     100           0 : static void det_randomize(void *buf, size_t buflen, const void *seed, size_t seedlen, uint32_t idx) {
     101             :         gcry_md_hd_t hd, hd2;
     102             :         size_t olen, cpylen;
     103             :         uint32_t ctr;
     104             : 
     105           0 :         olen = gcry_md_get_algo_dlen(RND_HASH);
     106           0 :         gcry_md_open(&hd, RND_HASH, 0);
     107           0 :         gcry_md_write(hd, seed, seedlen);
     108           0 :         gcry_md_putc(hd, (idx >> 24) & 0xff);
     109           0 :         gcry_md_putc(hd, (idx >> 16) & 0xff);
     110           0 :         gcry_md_putc(hd, (idx >>  8) & 0xff);
     111           0 :         gcry_md_putc(hd, (idx >>  0) & 0xff);
     112             : 
     113           0 :         for (ctr = 0; buflen; ctr++) {
     114           0 :                 gcry_md_copy(&hd2, hd);
     115           0 :                 gcry_md_putc(hd2, (ctr >> 24) & 0xff);
     116           0 :                 gcry_md_putc(hd2, (ctr >> 16) & 0xff);
     117           0 :                 gcry_md_putc(hd2, (ctr >>  8) & 0xff);
     118           0 :                 gcry_md_putc(hd2, (ctr >>  0) & 0xff);
     119           0 :                 gcry_md_final(hd2);
     120           0 :                 cpylen = (buflen < olen) ? buflen : olen;
     121           0 :                 memcpy(buf, gcry_md_read(hd2, RND_HASH), cpylen);
     122           0 :                 gcry_md_close(hd2);
     123           0 :                 buf += cpylen;
     124           0 :                 buflen -= cpylen;
     125             :         }
     126           0 :         gcry_md_close(hd);
     127           0 : }
     128             : 
     129             : /* deterministically generate from seed/idx a prime of length `bits' that is 3 (mod 4) */
     130           0 : static gcry_mpi_t genprime3mod4(int bits, const void *seed, size_t seedlen, uint32_t idx) {
     131           0 :         size_t buflen = bits / 8;
     132           0 :         uint8_t buf[buflen];
     133             :         gcry_mpi_t p;
     134             : 
     135           0 :         assert(bits % 8 == 0);
     136           0 :         assert(buflen > 0);
     137             : 
     138           0 :         det_randomize(buf, buflen, seed, seedlen, idx);
     139           0 :         buf[0] |= 0xc0; /* set upper two bits, so that n=pq has maximum size */
     140           0 :         buf[buflen - 1] |= 0x03; /* set lower two bits, to have result 3 (mod 4) */
     141             : 
     142           0 :         p = mpi_import(buf, buflen);
     143           0 :         while (gcry_prime_check(p, 0))
     144           0 :                 gcry_mpi_add_ui(p, p, 4);
     145             : 
     146           0 :         return p;
     147             : }
     148             : 
     149             : /* deterministically generate from seed/idx a quadratic residue (mod n) */
     150           0 : static gcry_mpi_t gensquare(const gcry_mpi_t n, const void *seed, size_t seedlen, uint32_t idx, unsigned secpar) {
     151           0 :         size_t buflen = secpar / 8;
     152           0 :         uint8_t buf[buflen];
     153             :         gcry_mpi_t x;
     154             : 
     155           0 :         det_randomize(buf, buflen, seed, seedlen, idx);
     156           0 :         buf[0] &= 0x7f; /* clear upper bit, so that we have x < n */
     157           0 :         x = mpi_import(buf, buflen);
     158           0 :         assert(gcry_mpi_cmp(x, n) < 0);
     159           0 :         gcry_mpi_mulm(x, x, x, n);
     160           0 :         return x;
     161             : }
     162             : 
     163             : /* compute 2^m (mod phi(p)), for a prime p */
     164           0 : static gcry_mpi_t twopowmodphi(uint64_t m, const gcry_mpi_t p) {
     165             :         gcry_mpi_t phi, r;
     166             :         int n;
     167             : 
     168           0 :         phi = gcry_mpi_new(0);
     169           0 :         gcry_mpi_sub_ui(phi, p, 1);
     170             : 
     171             :         /* count number of used bits in m */
     172           0 :         for (n = 0; (1ULL << n) <= m; n++)
     173             :                 ;
     174             : 
     175           0 :         r = gcry_mpi_new(0);
     176           0 :         gcry_mpi_set_ui(r, 1);
     177           0 :         while (n) { /* square and multiply algorithm for fast exponentiation */
     178           0 :                 n--;
     179           0 :                 gcry_mpi_mulm(r, r, r, phi);
     180           0 :                 if (m & ((uint64_t)1 << n)) {
     181           0 :                         gcry_mpi_add(r, r, r);
     182           0 :                         if (gcry_mpi_cmp(r, phi) >= 0)
     183           0 :                                 gcry_mpi_sub(r, r, phi);
     184             :                 }
     185             :         }
     186             : 
     187           0 :         gcry_mpi_release(phi);
     188           0 :         return r;
     189             : }
     190             : 
     191             : /* Decompose $x \in Z_n$ into $(xp,xq) \in Z_p \times Z_q$ using Chinese Remainder Theorem */
     192           0 : static void CRT_decompose(gcry_mpi_t *xp, gcry_mpi_t *xq, const gcry_mpi_t x, const gcry_mpi_t p, const gcry_mpi_t q) {
     193           0 :         *xp = gcry_mpi_new(0);
     194           0 :         *xq = gcry_mpi_new(0);
     195           0 :         gcry_mpi_mod(*xp, x, p);
     196           0 :         gcry_mpi_mod(*xq, x, q);
     197           0 : }
     198             : 
     199             : /* Compose $(xp,xq) \in Z_p \times Z_q$ into $x \in Z_n$ using Chinese Remainder Theorem */
     200           0 : static void CRT_compose(gcry_mpi_t *x, const gcry_mpi_t xp, const gcry_mpi_t xq, const gcry_mpi_t p, const gcry_mpi_t q) {
     201             :         gcry_mpi_t a, u;
     202             : 
     203           0 :         a = gcry_mpi_new(0);
     204           0 :         u = gcry_mpi_new(0);
     205           0 :         *x = gcry_mpi_new(0);
     206           0 :         gcry_mpi_subm(a, xq, xp, q);
     207           0 :         gcry_mpi_invm(u, p, q);
     208           0 :         gcry_mpi_mulm(a, a, u, q); /* a = (xq - xp) / p  (mod q) */
     209           0 :         gcry_mpi_mul(*x, p, a);
     210           0 :         gcry_mpi_add(*x, *x, xp); /* x = p * ((xq - xp) / p mod q) + xp */
     211           0 :         gcry_mpi_release(a);
     212           0 :         gcry_mpi_release(u);
     213           0 : }
     214             : 
     215             : /******************************************************************************/
     216             : 
     217           0 : size_t FSPRG_mskinbytes(unsigned _secpar) {
     218           0 :         VALIDATE_SECPAR(_secpar);
     219           0 :         return 2 + 2 * (_secpar / 2) / 8; /* to store header,p,q */
     220             : }
     221             : 
     222           0 : size_t FSPRG_mpkinbytes(unsigned _secpar) {
     223           0 :         VALIDATE_SECPAR(_secpar);
     224           0 :         return 2 + _secpar / 8; /* to store header,n */
     225             : }
     226             : 
     227           0 : size_t FSPRG_stateinbytes(unsigned _secpar) {
     228           0 :         VALIDATE_SECPAR(_secpar);
     229           0 :         return 2 + 2 * _secpar / 8 + 8; /* to store header,n,x,epoch */
     230             : }
     231             : 
     232           0 : static void store_secpar(void *buf, uint16_t secpar) {
     233           0 :         secpar = secpar / 16 - 1;
     234           0 :         ((uint8_t*) buf)[0] = (secpar >> 8) & 0xff;
     235           0 :         ((uint8_t*) buf)[1] = (secpar >> 0) & 0xff;
     236           0 : }
     237             : 
     238           0 : static uint16_t read_secpar(const void *buf) {
     239             :         uint16_t secpar;
     240           0 :         secpar =
     241           0 :                 (uint16_t)(((uint8_t*) buf)[0]) << 8 |
     242           0 :                 (uint16_t)(((uint8_t*) buf)[1]) << 0;
     243           0 :         return 16 * (secpar + 1);
     244             : }
     245             : 
     246           0 : void FSPRG_GenMK(void *msk, void *mpk, const void *seed, size_t seedlen, unsigned _secpar) {
     247             :         uint8_t iseed[FSPRG_RECOMMENDED_SEEDLEN];
     248             :         gcry_mpi_t n, p, q;
     249             :         uint16_t secpar;
     250             : 
     251           0 :         VALIDATE_SECPAR(_secpar);
     252           0 :         secpar = _secpar;
     253             : 
     254           0 :         initialize_libgcrypt(false);
     255             : 
     256           0 :         if (!seed) {
     257           0 :                 gcry_randomize(iseed, FSPRG_RECOMMENDED_SEEDLEN, GCRY_STRONG_RANDOM);
     258           0 :                 seed = iseed;
     259           0 :                 seedlen = FSPRG_RECOMMENDED_SEEDLEN;
     260             :         }
     261             : 
     262           0 :         p = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_P);
     263           0 :         q = genprime3mod4(secpar / 2, seed, seedlen, RND_GEN_Q);
     264             : 
     265           0 :         if (msk) {
     266           0 :                 store_secpar(msk + 0, secpar);
     267           0 :                 mpi_export(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8, p);
     268           0 :                 mpi_export(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8, q);
     269             :         }
     270             : 
     271           0 :         if (mpk) {
     272           0 :                 n = gcry_mpi_new(0);
     273           0 :                 gcry_mpi_mul(n, p, q);
     274           0 :                 assert(gcry_mpi_get_nbits(n) == secpar);
     275             : 
     276           0 :                 store_secpar(mpk + 0, secpar);
     277           0 :                 mpi_export(mpk + 2, secpar / 8, n);
     278             : 
     279           0 :                 gcry_mpi_release(n);
     280             :         }
     281             : 
     282           0 :         gcry_mpi_release(p);
     283           0 :         gcry_mpi_release(q);
     284           0 : }
     285             : 
     286           0 : void FSPRG_GenState0(void *state, const void *mpk, const void *seed, size_t seedlen) {
     287             :         gcry_mpi_t n, x;
     288             :         uint16_t secpar;
     289             : 
     290           0 :         initialize_libgcrypt(false);
     291             : 
     292           0 :         secpar = read_secpar(mpk + 0);
     293           0 :         n = mpi_import(mpk + 2, secpar / 8);
     294           0 :         x = gensquare(n, seed, seedlen, RND_GEN_X, secpar);
     295             : 
     296           0 :         memcpy(state, mpk, 2 + secpar / 8);
     297           0 :         mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x);
     298           0 :         memzero(state + 2 + 2 * secpar / 8, 8);
     299             : 
     300           0 :         gcry_mpi_release(n);
     301           0 :         gcry_mpi_release(x);
     302           0 : }
     303             : 
     304           0 : void FSPRG_Evolve(void *state) {
     305             :         gcry_mpi_t n, x;
     306             :         uint16_t secpar;
     307             :         uint64_t epoch;
     308             : 
     309           0 :         initialize_libgcrypt(false);
     310             : 
     311           0 :         secpar = read_secpar(state + 0);
     312           0 :         n = mpi_import(state + 2 + 0 * secpar / 8, secpar / 8);
     313           0 :         x = mpi_import(state + 2 + 1 * secpar / 8, secpar / 8);
     314           0 :         epoch = uint64_import(state + 2 + 2 * secpar / 8, 8);
     315             : 
     316           0 :         gcry_mpi_mulm(x, x, x, n);
     317           0 :         epoch++;
     318             : 
     319           0 :         mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, x);
     320           0 :         uint64_export(state + 2 + 2 * secpar / 8, 8, epoch);
     321             : 
     322           0 :         gcry_mpi_release(n);
     323           0 :         gcry_mpi_release(x);
     324           0 : }
     325             : 
     326           0 : uint64_t FSPRG_GetEpoch(const void *state) {
     327             :         uint16_t secpar;
     328           0 :         secpar = read_secpar(state + 0);
     329           0 :         return uint64_import(state + 2 + 2 * secpar / 8, 8);
     330             : }
     331             : 
     332           0 : void FSPRG_Seek(void *state, uint64_t epoch, const void *msk, const void *seed, size_t seedlen) {
     333             :         gcry_mpi_t p, q, n, x, xp, xq, kp, kq, xm;
     334             :         uint16_t secpar;
     335             : 
     336           0 :         initialize_libgcrypt(false);
     337             : 
     338           0 :         secpar = read_secpar(msk + 0);
     339           0 :         p  = mpi_import(msk + 2 + 0 * (secpar / 2) / 8, (secpar / 2) / 8);
     340           0 :         q  = mpi_import(msk + 2 + 1 * (secpar / 2) / 8, (secpar / 2) / 8);
     341             : 
     342           0 :         n = gcry_mpi_new(0);
     343           0 :         gcry_mpi_mul(n, p, q);
     344             : 
     345           0 :         x = gensquare(n, seed, seedlen, RND_GEN_X, secpar);
     346           0 :         CRT_decompose(&xp, &xq, x, p, q); /* split (mod n) into (mod p) and (mod q) using CRT */
     347             : 
     348           0 :         kp = twopowmodphi(epoch, p); /* compute 2^epoch (mod phi(p)) */
     349           0 :         kq = twopowmodphi(epoch, q); /* compute 2^epoch (mod phi(q)) */
     350             : 
     351           0 :         gcry_mpi_powm(xp, xp, kp, p); /* compute x^(2^epoch) (mod p) */
     352           0 :         gcry_mpi_powm(xq, xq, kq, q); /* compute x^(2^epoch) (mod q) */
     353             : 
     354           0 :         CRT_compose(&xm, xp, xq, p, q); /* combine (mod p) and (mod q) to (mod n) using CRT */
     355             : 
     356           0 :         store_secpar(state + 0, secpar);
     357           0 :         mpi_export(state + 2 + 0 * secpar / 8, secpar / 8, n);
     358           0 :         mpi_export(state + 2 + 1 * secpar / 8, secpar / 8, xm);
     359           0 :         uint64_export(state + 2 + 2 * secpar / 8, 8, epoch);
     360             : 
     361           0 :         gcry_mpi_release(p);
     362           0 :         gcry_mpi_release(q);
     363           0 :         gcry_mpi_release(n);
     364           0 :         gcry_mpi_release(x);
     365           0 :         gcry_mpi_release(xp);
     366           0 :         gcry_mpi_release(xq);
     367           0 :         gcry_mpi_release(kp);
     368           0 :         gcry_mpi_release(kq);
     369           0 :         gcry_mpi_release(xm);
     370           0 : }
     371             : 
     372           0 : void FSPRG_GetKey(const void *state, void *key, size_t keylen, uint32_t idx) {
     373             :         uint16_t secpar;
     374             : 
     375           0 :         initialize_libgcrypt(false);
     376             : 
     377           0 :         secpar = read_secpar(state + 0);
     378           0 :         det_randomize(key, keylen, state + 2, 2 * secpar / 8 + 8, idx);
     379           0 : }

Generated by: LCOV version 1.14