Line data Source code
1 : /* SPDX-License-Identifier: LGPL-2.1+ */
2 :
3 : #include <errno.h>
4 : #include <fcntl.h>
5 : #include <glob.h>
6 : #include <grp.h>
7 : #include <poll.h>
8 : #include <signal.h>
9 : #include <string.h>
10 : #include <sys/capability.h>
11 : #include <sys/eventfd.h>
12 : #include <sys/mman.h>
13 : #include <sys/personality.h>
14 : #include <sys/prctl.h>
15 : #include <sys/shm.h>
16 : #include <sys/socket.h>
17 : #include <sys/stat.h>
18 : #include <sys/types.h>
19 : #include <sys/un.h>
20 : #include <unistd.h>
21 : #include <utmpx.h>
22 :
23 : #if HAVE_PAM
24 : #include <security/pam_appl.h>
25 : #endif
26 :
27 : #if HAVE_SELINUX
28 : #include <selinux/selinux.h>
29 : #endif
30 :
31 : #if HAVE_SECCOMP
32 : #include <seccomp.h>
33 : #endif
34 :
35 : #if HAVE_APPARMOR
36 : #include <sys/apparmor.h>
37 : #endif
38 :
39 : #include "sd-messages.h"
40 :
41 : #include "af-list.h"
42 : #include "alloc-util.h"
43 : #if HAVE_APPARMOR
44 : #include "apparmor-util.h"
45 : #endif
46 : #include "async.h"
47 : #include "barrier.h"
48 : #include "cap-list.h"
49 : #include "capability-util.h"
50 : #include "chown-recursive.h"
51 : #include "cpu-set-util.h"
52 : #include "def.h"
53 : #include "env-file.h"
54 : #include "env-util.h"
55 : #include "errno-list.h"
56 : #include "execute.h"
57 : #include "exit-status.h"
58 : #include "fd-util.h"
59 : #include "format-util.h"
60 : #include "fs-util.h"
61 : #include "glob-util.h"
62 : #include "io-util.h"
63 : #include "ioprio.h"
64 : #include "label.h"
65 : #include "log.h"
66 : #include "macro.h"
67 : #include "manager.h"
68 : #include "memory-util.h"
69 : #include "missing.h"
70 : #include "mkdir.h"
71 : #include "namespace.h"
72 : #include "parse-util.h"
73 : #include "path-util.h"
74 : #include "process-util.h"
75 : #include "rlimit-util.h"
76 : #include "rm-rf.h"
77 : #if HAVE_SECCOMP
78 : #include "seccomp-util.h"
79 : #endif
80 : #include "securebits-util.h"
81 : #include "selinux-util.h"
82 : #include "signal-util.h"
83 : #include "smack-util.h"
84 : #include "socket-util.h"
85 : #include "special.h"
86 : #include "stat-util.h"
87 : #include "string-table.h"
88 : #include "string-util.h"
89 : #include "strv.h"
90 : #include "syslog-util.h"
91 : #include "terminal-util.h"
92 : #include "umask-util.h"
93 : #include "unit.h"
94 : #include "user-util.h"
95 : #include "utmp-wtmp.h"
96 :
97 : #define IDLE_TIMEOUT_USEC (5*USEC_PER_SEC)
98 : #define IDLE_TIMEOUT2_USEC (1*USEC_PER_SEC)
99 :
100 : #define SNDBUF_SIZE (8*1024*1024)
101 :
102 0 : static int shift_fds(int fds[], size_t n_fds) {
103 : int start, restart_from;
104 :
105 0 : if (n_fds <= 0)
106 0 : return 0;
107 :
108 : /* Modifies the fds array! (sorts it) */
109 :
110 0 : assert(fds);
111 :
112 0 : start = 0;
113 0 : for (;;) {
114 : int i;
115 :
116 0 : restart_from = -1;
117 :
118 0 : for (i = start; i < (int) n_fds; i++) {
119 : int nfd;
120 :
121 : /* Already at right index? */
122 0 : if (fds[i] == i+3)
123 0 : continue;
124 :
125 0 : nfd = fcntl(fds[i], F_DUPFD, i + 3);
126 0 : if (nfd < 0)
127 0 : return -errno;
128 :
129 0 : safe_close(fds[i]);
130 0 : fds[i] = nfd;
131 :
132 : /* Hmm, the fd we wanted isn't free? Then
133 : * let's remember that and try again from here */
134 0 : if (nfd != i+3 && restart_from < 0)
135 0 : restart_from = i;
136 : }
137 :
138 0 : if (restart_from < 0)
139 0 : break;
140 :
141 0 : start = restart_from;
142 : }
143 :
144 0 : return 0;
145 : }
146 :
147 0 : static int flags_fds(const int fds[], size_t n_socket_fds, size_t n_storage_fds, bool nonblock) {
148 : size_t i, n_fds;
149 : int r;
150 :
151 0 : n_fds = n_socket_fds + n_storage_fds;
152 0 : if (n_fds <= 0)
153 0 : return 0;
154 :
155 0 : assert(fds);
156 :
157 : /* Drops/Sets O_NONBLOCK and FD_CLOEXEC from the file flags.
158 : * O_NONBLOCK only applies to socket activation though. */
159 :
160 0 : for (i = 0; i < n_fds; i++) {
161 :
162 0 : if (i < n_socket_fds) {
163 0 : r = fd_nonblock(fds[i], nonblock);
164 0 : if (r < 0)
165 0 : return r;
166 : }
167 :
168 : /* We unconditionally drop FD_CLOEXEC from the fds,
169 : * since after all we want to pass these fds to our
170 : * children */
171 :
172 0 : r = fd_cloexec(fds[i], false);
173 0 : if (r < 0)
174 0 : return r;
175 : }
176 :
177 0 : return 0;
178 : }
179 :
180 0 : static const char *exec_context_tty_path(const ExecContext *context) {
181 0 : assert(context);
182 :
183 0 : if (context->stdio_as_fds)
184 0 : return NULL;
185 :
186 0 : if (context->tty_path)
187 0 : return context->tty_path;
188 :
189 0 : return "/dev/console";
190 : }
191 :
192 0 : static void exec_context_tty_reset(const ExecContext *context, const ExecParameters *p) {
193 : const char *path;
194 :
195 0 : assert(context);
196 :
197 0 : path = exec_context_tty_path(context);
198 :
199 0 : if (context->tty_vhangup) {
200 0 : if (p && p->stdin_fd >= 0)
201 0 : (void) terminal_vhangup_fd(p->stdin_fd);
202 0 : else if (path)
203 0 : (void) terminal_vhangup(path);
204 : }
205 :
206 0 : if (context->tty_reset) {
207 0 : if (p && p->stdin_fd >= 0)
208 0 : (void) reset_terminal_fd(p->stdin_fd, true);
209 0 : else if (path)
210 0 : (void) reset_terminal(path);
211 : }
212 :
213 0 : if (context->tty_vt_disallocate && path)
214 0 : (void) vt_disallocate(path);
215 0 : }
216 :
217 237 : static bool is_terminal_input(ExecInput i) {
218 237 : return IN_SET(i,
219 : EXEC_INPUT_TTY,
220 : EXEC_INPUT_TTY_FORCE,
221 : EXEC_INPUT_TTY_FAIL);
222 : }
223 :
224 474 : static bool is_terminal_output(ExecOutput o) {
225 474 : return IN_SET(o,
226 : EXEC_OUTPUT_TTY,
227 : EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
228 : EXEC_OUTPUT_KMSG_AND_CONSOLE,
229 : EXEC_OUTPUT_JOURNAL_AND_CONSOLE);
230 : }
231 :
232 0 : static bool is_syslog_output(ExecOutput o) {
233 0 : return IN_SET(o,
234 : EXEC_OUTPUT_SYSLOG,
235 : EXEC_OUTPUT_SYSLOG_AND_CONSOLE);
236 : }
237 :
238 0 : static bool is_kmsg_output(ExecOutput o) {
239 0 : return IN_SET(o,
240 : EXEC_OUTPUT_KMSG,
241 : EXEC_OUTPUT_KMSG_AND_CONSOLE);
242 : }
243 :
244 0 : static bool exec_context_needs_term(const ExecContext *c) {
245 0 : assert(c);
246 :
247 : /* Return true if the execution context suggests we should set $TERM to something useful. */
248 :
249 0 : if (is_terminal_input(c->std_input))
250 0 : return true;
251 :
252 0 : if (is_terminal_output(c->std_output))
253 0 : return true;
254 :
255 0 : if (is_terminal_output(c->std_error))
256 0 : return true;
257 :
258 0 : return !!c->tty_path;
259 : }
260 :
261 0 : static int open_null_as(int flags, int nfd) {
262 : int fd;
263 :
264 0 : assert(nfd >= 0);
265 :
266 0 : fd = open("/dev/null", flags|O_NOCTTY);
267 0 : if (fd < 0)
268 0 : return -errno;
269 :
270 0 : return move_fd(fd, nfd, false);
271 : }
272 :
273 0 : static int connect_journal_socket(int fd, uid_t uid, gid_t gid) {
274 : static const union sockaddr_union sa = {
275 : .un.sun_family = AF_UNIX,
276 : .un.sun_path = "/run/systemd/journal/stdout",
277 : };
278 0 : uid_t olduid = UID_INVALID;
279 0 : gid_t oldgid = GID_INVALID;
280 : int r;
281 :
282 0 : if (gid_is_valid(gid)) {
283 0 : oldgid = getgid();
284 :
285 0 : if (setegid(gid) < 0)
286 0 : return -errno;
287 : }
288 :
289 0 : if (uid_is_valid(uid)) {
290 0 : olduid = getuid();
291 :
292 0 : if (seteuid(uid) < 0) {
293 0 : r = -errno;
294 0 : goto restore_gid;
295 : }
296 : }
297 :
298 0 : r = connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0 ? -errno : 0;
299 :
300 : /* If we fail to restore the uid or gid, things will likely
301 : fail later on. This should only happen if an LSM interferes. */
302 :
303 0 : if (uid_is_valid(uid))
304 0 : (void) seteuid(olduid);
305 :
306 0 : restore_gid:
307 0 : if (gid_is_valid(gid))
308 0 : (void) setegid(oldgid);
309 :
310 0 : return r;
311 : }
312 :
313 0 : static int connect_logger_as(
314 : const Unit *unit,
315 : const ExecContext *context,
316 : const ExecParameters *params,
317 : ExecOutput output,
318 : const char *ident,
319 : int nfd,
320 : uid_t uid,
321 : gid_t gid) {
322 :
323 0 : _cleanup_close_ int fd = -1;
324 : int r;
325 :
326 0 : assert(context);
327 0 : assert(params);
328 0 : assert(output < _EXEC_OUTPUT_MAX);
329 0 : assert(ident);
330 0 : assert(nfd >= 0);
331 :
332 0 : fd = socket(AF_UNIX, SOCK_STREAM, 0);
333 0 : if (fd < 0)
334 0 : return -errno;
335 :
336 0 : r = connect_journal_socket(fd, uid, gid);
337 0 : if (r < 0)
338 0 : return r;
339 :
340 0 : if (shutdown(fd, SHUT_RD) < 0)
341 0 : return -errno;
342 :
343 0 : (void) fd_inc_sndbuf(fd, SNDBUF_SIZE);
344 :
345 0 : if (dprintf(fd,
346 : "%s\n"
347 : "%s\n"
348 : "%i\n"
349 : "%i\n"
350 : "%i\n"
351 : "%i\n"
352 : "%i\n",
353 0 : context->syslog_identifier ?: ident,
354 0 : params->flags & EXEC_PASS_LOG_UNIT ? unit->id : "",
355 : context->syslog_priority,
356 0 : !!context->syslog_level_prefix,
357 0 : is_syslog_output(output),
358 0 : is_kmsg_output(output),
359 0 : is_terminal_output(output)) < 0)
360 0 : return -errno;
361 :
362 0 : return move_fd(TAKE_FD(fd), nfd, false);
363 : }
364 :
365 0 : static int open_terminal_as(const char *path, int flags, int nfd) {
366 : int fd;
367 :
368 0 : assert(path);
369 0 : assert(nfd >= 0);
370 :
371 0 : fd = open_terminal(path, flags | O_NOCTTY);
372 0 : if (fd < 0)
373 0 : return fd;
374 :
375 0 : return move_fd(fd, nfd, false);
376 : }
377 :
378 0 : static int acquire_path(const char *path, int flags, mode_t mode) {
379 0 : union sockaddr_union sa = {};
380 0 : _cleanup_close_ int fd = -1;
381 : int r, salen;
382 :
383 0 : assert(path);
384 :
385 0 : if (IN_SET(flags & O_ACCMODE, O_WRONLY, O_RDWR))
386 0 : flags |= O_CREAT;
387 :
388 0 : fd = open(path, flags|O_NOCTTY, mode);
389 0 : if (fd >= 0)
390 0 : return TAKE_FD(fd);
391 :
392 0 : if (errno != ENXIO) /* ENXIO is returned when we try to open() an AF_UNIX file system socket on Linux */
393 0 : return -errno;
394 0 : if (strlen(path) >= sizeof(sa.un.sun_path)) /* Too long, can't be a UNIX socket */
395 0 : return -ENXIO;
396 :
397 : /* So, it appears the specified path could be an AF_UNIX socket. Let's see if we can connect to it. */
398 :
399 0 : fd = socket(AF_UNIX, SOCK_STREAM, 0);
400 0 : if (fd < 0)
401 0 : return -errno;
402 :
403 0 : salen = sockaddr_un_set_path(&sa.un, path);
404 0 : if (salen < 0)
405 0 : return salen;
406 :
407 0 : if (connect(fd, &sa.sa, salen) < 0)
408 0 : return errno == EINVAL ? -ENXIO : -errno; /* Propagate initial error if we get EINVAL, i.e. we have
409 : * indication that his wasn't an AF_UNIX socket after all */
410 :
411 0 : if ((flags & O_ACCMODE) == O_RDONLY)
412 0 : r = shutdown(fd, SHUT_WR);
413 0 : else if ((flags & O_ACCMODE) == O_WRONLY)
414 0 : r = shutdown(fd, SHUT_RD);
415 : else
416 0 : return TAKE_FD(fd);
417 0 : if (r < 0)
418 0 : return -errno;
419 :
420 0 : return TAKE_FD(fd);
421 : }
422 :
423 0 : static int fixup_input(
424 : const ExecContext *context,
425 : int socket_fd,
426 : bool apply_tty_stdin) {
427 :
428 : ExecInput std_input;
429 :
430 0 : assert(context);
431 :
432 0 : std_input = context->std_input;
433 :
434 0 : if (is_terminal_input(std_input) && !apply_tty_stdin)
435 0 : return EXEC_INPUT_NULL;
436 :
437 0 : if (std_input == EXEC_INPUT_SOCKET && socket_fd < 0)
438 0 : return EXEC_INPUT_NULL;
439 :
440 0 : if (std_input == EXEC_INPUT_DATA && context->stdin_data_size == 0)
441 0 : return EXEC_INPUT_NULL;
442 :
443 0 : return std_input;
444 : }
445 :
446 0 : static int fixup_output(ExecOutput std_output, int socket_fd) {
447 :
448 0 : if (std_output == EXEC_OUTPUT_SOCKET && socket_fd < 0)
449 0 : return EXEC_OUTPUT_INHERIT;
450 :
451 0 : return std_output;
452 : }
453 :
454 0 : static int setup_input(
455 : const ExecContext *context,
456 : const ExecParameters *params,
457 : int socket_fd,
458 : const int named_iofds[static 3]) {
459 :
460 : ExecInput i;
461 :
462 0 : assert(context);
463 0 : assert(params);
464 0 : assert(named_iofds);
465 :
466 0 : if (params->stdin_fd >= 0) {
467 0 : if (dup2(params->stdin_fd, STDIN_FILENO) < 0)
468 0 : return -errno;
469 :
470 : /* Try to make this the controlling tty, if it is a tty, and reset it */
471 0 : if (isatty(STDIN_FILENO)) {
472 0 : (void) ioctl(STDIN_FILENO, TIOCSCTTY, context->std_input == EXEC_INPUT_TTY_FORCE);
473 0 : (void) reset_terminal_fd(STDIN_FILENO, true);
474 : }
475 :
476 0 : return STDIN_FILENO;
477 : }
478 :
479 0 : i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
480 :
481 0 : switch (i) {
482 :
483 0 : case EXEC_INPUT_NULL:
484 0 : return open_null_as(O_RDONLY, STDIN_FILENO);
485 :
486 0 : case EXEC_INPUT_TTY:
487 : case EXEC_INPUT_TTY_FORCE:
488 : case EXEC_INPUT_TTY_FAIL: {
489 : int fd;
490 :
491 0 : fd = acquire_terminal(exec_context_tty_path(context),
492 0 : i == EXEC_INPUT_TTY_FAIL ? ACQUIRE_TERMINAL_TRY :
493 : i == EXEC_INPUT_TTY_FORCE ? ACQUIRE_TERMINAL_FORCE :
494 : ACQUIRE_TERMINAL_WAIT,
495 : USEC_INFINITY);
496 0 : if (fd < 0)
497 0 : return fd;
498 :
499 0 : return move_fd(fd, STDIN_FILENO, false);
500 : }
501 :
502 0 : case EXEC_INPUT_SOCKET:
503 0 : assert(socket_fd >= 0);
504 :
505 0 : return dup2(socket_fd, STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
506 :
507 0 : case EXEC_INPUT_NAMED_FD:
508 0 : assert(named_iofds[STDIN_FILENO] >= 0);
509 :
510 0 : (void) fd_nonblock(named_iofds[STDIN_FILENO], false);
511 0 : return dup2(named_iofds[STDIN_FILENO], STDIN_FILENO) < 0 ? -errno : STDIN_FILENO;
512 :
513 0 : case EXEC_INPUT_DATA: {
514 : int fd;
515 :
516 0 : fd = acquire_data_fd(context->stdin_data, context->stdin_data_size, 0);
517 0 : if (fd < 0)
518 0 : return fd;
519 :
520 0 : return move_fd(fd, STDIN_FILENO, false);
521 : }
522 :
523 0 : case EXEC_INPUT_FILE: {
524 : bool rw;
525 : int fd;
526 :
527 0 : assert(context->stdio_file[STDIN_FILENO]);
528 :
529 0 : rw = (context->std_output == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDOUT_FILENO])) ||
530 0 : (context->std_error == EXEC_OUTPUT_FILE && streq_ptr(context->stdio_file[STDIN_FILENO], context->stdio_file[STDERR_FILENO]));
531 :
532 0 : fd = acquire_path(context->stdio_file[STDIN_FILENO], rw ? O_RDWR : O_RDONLY, 0666 & ~context->umask);
533 0 : if (fd < 0)
534 0 : return fd;
535 :
536 0 : return move_fd(fd, STDIN_FILENO, false);
537 : }
538 :
539 0 : default:
540 0 : assert_not_reached("Unknown input type");
541 : }
542 : }
543 :
544 0 : static bool can_inherit_stderr_from_stdout(
545 : const ExecContext *context,
546 : ExecOutput o,
547 : ExecOutput e) {
548 :
549 0 : assert(context);
550 :
551 : /* Returns true, if given the specified STDERR and STDOUT output we can directly dup() the stdout fd to the
552 : * stderr fd */
553 :
554 0 : if (e == EXEC_OUTPUT_INHERIT)
555 0 : return true;
556 0 : if (e != o)
557 0 : return false;
558 :
559 0 : if (e == EXEC_OUTPUT_NAMED_FD)
560 0 : return streq_ptr(context->stdio_fdname[STDOUT_FILENO], context->stdio_fdname[STDERR_FILENO]);
561 :
562 0 : if (IN_SET(e, EXEC_OUTPUT_FILE, EXEC_OUTPUT_FILE_APPEND))
563 0 : return streq_ptr(context->stdio_file[STDOUT_FILENO], context->stdio_file[STDERR_FILENO]);
564 :
565 0 : return true;
566 : }
567 :
568 0 : static int setup_output(
569 : const Unit *unit,
570 : const ExecContext *context,
571 : const ExecParameters *params,
572 : int fileno,
573 : int socket_fd,
574 : const int named_iofds[static 3],
575 : const char *ident,
576 : uid_t uid,
577 : gid_t gid,
578 : dev_t *journal_stream_dev,
579 : ino_t *journal_stream_ino) {
580 :
581 : ExecOutput o;
582 : ExecInput i;
583 : int r;
584 :
585 0 : assert(unit);
586 0 : assert(context);
587 0 : assert(params);
588 0 : assert(ident);
589 0 : assert(journal_stream_dev);
590 0 : assert(journal_stream_ino);
591 :
592 0 : if (fileno == STDOUT_FILENO && params->stdout_fd >= 0) {
593 :
594 0 : if (dup2(params->stdout_fd, STDOUT_FILENO) < 0)
595 0 : return -errno;
596 :
597 0 : return STDOUT_FILENO;
598 : }
599 :
600 0 : if (fileno == STDERR_FILENO && params->stderr_fd >= 0) {
601 0 : if (dup2(params->stderr_fd, STDERR_FILENO) < 0)
602 0 : return -errno;
603 :
604 0 : return STDERR_FILENO;
605 : }
606 :
607 0 : i = fixup_input(context, socket_fd, params->flags & EXEC_APPLY_TTY_STDIN);
608 0 : o = fixup_output(context->std_output, socket_fd);
609 :
610 0 : if (fileno == STDERR_FILENO) {
611 : ExecOutput e;
612 0 : e = fixup_output(context->std_error, socket_fd);
613 :
614 : /* This expects the input and output are already set up */
615 :
616 : /* Don't change the stderr file descriptor if we inherit all
617 : * the way and are not on a tty */
618 0 : if (e == EXEC_OUTPUT_INHERIT &&
619 0 : o == EXEC_OUTPUT_INHERIT &&
620 0 : i == EXEC_INPUT_NULL &&
621 0 : !is_terminal_input(context->std_input) &&
622 0 : getppid () != 1)
623 0 : return fileno;
624 :
625 : /* Duplicate from stdout if possible */
626 0 : if (can_inherit_stderr_from_stdout(context, o, e))
627 0 : return dup2(STDOUT_FILENO, fileno) < 0 ? -errno : fileno;
628 :
629 0 : o = e;
630 :
631 0 : } else if (o == EXEC_OUTPUT_INHERIT) {
632 : /* If input got downgraded, inherit the original value */
633 0 : if (i == EXEC_INPUT_NULL && is_terminal_input(context->std_input))
634 0 : return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
635 :
636 : /* If the input is connected to anything that's not a /dev/null or a data fd, inherit that... */
637 0 : if (!IN_SET(i, EXEC_INPUT_NULL, EXEC_INPUT_DATA))
638 0 : return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
639 :
640 : /* If we are not started from PID 1 we just inherit STDOUT from our parent process. */
641 0 : if (getppid() != 1)
642 0 : return fileno;
643 :
644 : /* We need to open /dev/null here anew, to get the right access mode. */
645 0 : return open_null_as(O_WRONLY, fileno);
646 : }
647 :
648 0 : switch (o) {
649 :
650 0 : case EXEC_OUTPUT_NULL:
651 0 : return open_null_as(O_WRONLY, fileno);
652 :
653 0 : case EXEC_OUTPUT_TTY:
654 0 : if (is_terminal_input(i))
655 0 : return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
656 :
657 : /* We don't reset the terminal if this is just about output */
658 0 : return open_terminal_as(exec_context_tty_path(context), O_WRONLY, fileno);
659 :
660 0 : case EXEC_OUTPUT_SYSLOG:
661 : case EXEC_OUTPUT_SYSLOG_AND_CONSOLE:
662 : case EXEC_OUTPUT_KMSG:
663 : case EXEC_OUTPUT_KMSG_AND_CONSOLE:
664 : case EXEC_OUTPUT_JOURNAL:
665 : case EXEC_OUTPUT_JOURNAL_AND_CONSOLE:
666 0 : r = connect_logger_as(unit, context, params, o, ident, fileno, uid, gid);
667 0 : if (r < 0) {
668 0 : log_unit_warning_errno(unit, r, "Failed to connect %s to the journal socket, ignoring: %m", fileno == STDOUT_FILENO ? "stdout" : "stderr");
669 0 : r = open_null_as(O_WRONLY, fileno);
670 0 : } else {
671 : struct stat st;
672 :
673 : /* If we connected this fd to the journal via a stream, patch the device/inode into the passed
674 : * parameters, but only then. This is useful so that we can set $JOURNAL_STREAM that permits
675 : * services to detect whether they are connected to the journal or not.
676 : *
677 : * If both stdout and stderr are connected to a stream then let's make sure to store the data
678 : * about STDERR as that's usually the best way to do logging. */
679 :
680 0 : if (fstat(fileno, &st) >= 0 &&
681 0 : (*journal_stream_ino == 0 || fileno == STDERR_FILENO)) {
682 0 : *journal_stream_dev = st.st_dev;
683 0 : *journal_stream_ino = st.st_ino;
684 : }
685 : }
686 0 : return r;
687 :
688 0 : case EXEC_OUTPUT_SOCKET:
689 0 : assert(socket_fd >= 0);
690 :
691 0 : return dup2(socket_fd, fileno) < 0 ? -errno : fileno;
692 :
693 0 : case EXEC_OUTPUT_NAMED_FD:
694 0 : assert(named_iofds[fileno] >= 0);
695 :
696 0 : (void) fd_nonblock(named_iofds[fileno], false);
697 0 : return dup2(named_iofds[fileno], fileno) < 0 ? -errno : fileno;
698 :
699 0 : case EXEC_OUTPUT_FILE:
700 : case EXEC_OUTPUT_FILE_APPEND: {
701 : bool rw;
702 : int fd, flags;
703 :
704 0 : assert(context->stdio_file[fileno]);
705 :
706 0 : rw = context->std_input == EXEC_INPUT_FILE &&
707 0 : streq_ptr(context->stdio_file[fileno], context->stdio_file[STDIN_FILENO]);
708 :
709 0 : if (rw)
710 0 : return dup2(STDIN_FILENO, fileno) < 0 ? -errno : fileno;
711 :
712 0 : flags = O_WRONLY;
713 0 : if (o == EXEC_OUTPUT_FILE_APPEND)
714 0 : flags |= O_APPEND;
715 :
716 0 : fd = acquire_path(context->stdio_file[fileno], flags, 0666 & ~context->umask);
717 0 : if (fd < 0)
718 0 : return fd;
719 :
720 0 : return move_fd(fd, fileno, 0);
721 : }
722 :
723 0 : default:
724 0 : assert_not_reached("Unknown error type");
725 : }
726 : }
727 :
728 0 : static int chown_terminal(int fd, uid_t uid) {
729 : int r;
730 :
731 0 : assert(fd >= 0);
732 :
733 : /* Before we chown/chmod the TTY, let's ensure this is actually a tty */
734 0 : if (isatty(fd) < 1) {
735 0 : if (IN_SET(errno, EINVAL, ENOTTY))
736 0 : return 0; /* not a tty */
737 :
738 0 : return -errno;
739 : }
740 :
741 : /* This might fail. What matters are the results. */
742 0 : r = fchmod_and_chown(fd, TTY_MODE, uid, -1);
743 0 : if (r < 0)
744 0 : return r;
745 :
746 0 : return 1;
747 : }
748 :
749 0 : static int setup_confirm_stdio(const char *vc, int *_saved_stdin, int *_saved_stdout) {
750 0 : _cleanup_close_ int fd = -1, saved_stdin = -1, saved_stdout = -1;
751 : int r;
752 :
753 0 : assert(_saved_stdin);
754 0 : assert(_saved_stdout);
755 :
756 0 : saved_stdin = fcntl(STDIN_FILENO, F_DUPFD, 3);
757 0 : if (saved_stdin < 0)
758 0 : return -errno;
759 :
760 0 : saved_stdout = fcntl(STDOUT_FILENO, F_DUPFD, 3);
761 0 : if (saved_stdout < 0)
762 0 : return -errno;
763 :
764 0 : fd = acquire_terminal(vc, ACQUIRE_TERMINAL_WAIT, DEFAULT_CONFIRM_USEC);
765 0 : if (fd < 0)
766 0 : return fd;
767 :
768 0 : r = chown_terminal(fd, getuid());
769 0 : if (r < 0)
770 0 : return r;
771 :
772 0 : r = reset_terminal_fd(fd, true);
773 0 : if (r < 0)
774 0 : return r;
775 :
776 0 : r = rearrange_stdio(fd, fd, STDERR_FILENO);
777 0 : fd = -1;
778 0 : if (r < 0)
779 0 : return r;
780 :
781 0 : *_saved_stdin = saved_stdin;
782 0 : *_saved_stdout = saved_stdout;
783 :
784 0 : saved_stdin = saved_stdout = -1;
785 :
786 0 : return 0;
787 : }
788 :
789 0 : static void write_confirm_error_fd(int err, int fd, const Unit *u) {
790 0 : assert(err < 0);
791 :
792 0 : if (err == -ETIMEDOUT)
793 0 : dprintf(fd, "Confirmation question timed out for %s, assuming positive response.\n", u->id);
794 : else {
795 0 : errno = -err;
796 0 : dprintf(fd, "Couldn't ask confirmation for %s: %m, assuming positive response.\n", u->id);
797 : }
798 0 : }
799 :
800 0 : static void write_confirm_error(int err, const char *vc, const Unit *u) {
801 0 : _cleanup_close_ int fd = -1;
802 :
803 0 : assert(vc);
804 :
805 0 : fd = open_terminal(vc, O_WRONLY|O_NOCTTY|O_CLOEXEC);
806 0 : if (fd < 0)
807 0 : return;
808 :
809 0 : write_confirm_error_fd(err, fd, u);
810 : }
811 :
812 0 : static int restore_confirm_stdio(int *saved_stdin, int *saved_stdout) {
813 0 : int r = 0;
814 :
815 0 : assert(saved_stdin);
816 0 : assert(saved_stdout);
817 :
818 0 : release_terminal();
819 :
820 0 : if (*saved_stdin >= 0)
821 0 : if (dup2(*saved_stdin, STDIN_FILENO) < 0)
822 0 : r = -errno;
823 :
824 0 : if (*saved_stdout >= 0)
825 0 : if (dup2(*saved_stdout, STDOUT_FILENO) < 0)
826 0 : r = -errno;
827 :
828 0 : *saved_stdin = safe_close(*saved_stdin);
829 0 : *saved_stdout = safe_close(*saved_stdout);
830 :
831 0 : return r;
832 : }
833 :
834 : enum {
835 : CONFIRM_PRETEND_FAILURE = -1,
836 : CONFIRM_PRETEND_SUCCESS = 0,
837 : CONFIRM_EXECUTE = 1,
838 : };
839 :
840 0 : static int ask_for_confirmation(const char *vc, Unit *u, const char *cmdline) {
841 0 : int saved_stdout = -1, saved_stdin = -1, r;
842 0 : _cleanup_free_ char *e = NULL;
843 : char c;
844 :
845 : /* For any internal errors, assume a positive response. */
846 0 : r = setup_confirm_stdio(vc, &saved_stdin, &saved_stdout);
847 0 : if (r < 0) {
848 0 : write_confirm_error(r, vc, u);
849 0 : return CONFIRM_EXECUTE;
850 : }
851 :
852 : /* confirm_spawn might have been disabled while we were sleeping. */
853 0 : if (manager_is_confirm_spawn_disabled(u->manager)) {
854 0 : r = 1;
855 0 : goto restore_stdio;
856 : }
857 :
858 0 : e = ellipsize(cmdline, 60, 100);
859 0 : if (!e) {
860 0 : log_oom();
861 0 : r = CONFIRM_EXECUTE;
862 0 : goto restore_stdio;
863 : }
864 :
865 : for (;;) {
866 0 : r = ask_char(&c, "yfshiDjcn", "Execute %s? [y, f, s – h for help] ", e);
867 0 : if (r < 0) {
868 0 : write_confirm_error_fd(r, STDOUT_FILENO, u);
869 0 : r = CONFIRM_EXECUTE;
870 0 : goto restore_stdio;
871 : }
872 :
873 0 : switch (c) {
874 0 : case 'c':
875 0 : printf("Resuming normal execution.\n");
876 0 : manager_disable_confirm_spawn();
877 0 : r = 1;
878 0 : break;
879 0 : case 'D':
880 0 : unit_dump(u, stdout, " ");
881 0 : continue; /* ask again */
882 0 : case 'f':
883 0 : printf("Failing execution.\n");
884 0 : r = CONFIRM_PRETEND_FAILURE;
885 0 : break;
886 0 : case 'h':
887 0 : printf(" c - continue, proceed without asking anymore\n"
888 : " D - dump, show the state of the unit\n"
889 : " f - fail, don't execute the command and pretend it failed\n"
890 : " h - help\n"
891 : " i - info, show a short summary of the unit\n"
892 : " j - jobs, show jobs that are in progress\n"
893 : " s - skip, don't execute the command and pretend it succeeded\n"
894 : " y - yes, execute the command\n");
895 0 : continue; /* ask again */
896 0 : case 'i':
897 0 : printf(" Description: %s\n"
898 : " Unit: %s\n"
899 : " Command: %s\n",
900 : u->id, u->description, cmdline);
901 0 : continue; /* ask again */
902 0 : case 'j':
903 0 : manager_dump_jobs(u->manager, stdout, " ");
904 0 : continue; /* ask again */
905 0 : case 'n':
906 : /* 'n' was removed in favor of 'f'. */
907 0 : printf("Didn't understand 'n', did you mean 'f'?\n");
908 0 : continue; /* ask again */
909 0 : case 's':
910 0 : printf("Skipping execution.\n");
911 0 : r = CONFIRM_PRETEND_SUCCESS;
912 0 : break;
913 0 : case 'y':
914 0 : r = CONFIRM_EXECUTE;
915 0 : break;
916 0 : default:
917 0 : assert_not_reached("Unhandled choice");
918 : }
919 0 : break;
920 : }
921 :
922 0 : restore_stdio:
923 0 : restore_confirm_stdio(&saved_stdin, &saved_stdout);
924 0 : return r;
925 : }
926 :
927 0 : static int get_fixed_user(const ExecContext *c, const char **user,
928 : uid_t *uid, gid_t *gid,
929 : const char **home, const char **shell) {
930 : int r;
931 : const char *name;
932 :
933 0 : assert(c);
934 :
935 0 : if (!c->user)
936 0 : return 0;
937 :
938 : /* Note that we don't set $HOME or $SHELL if they are not particularly enlightening anyway
939 : * (i.e. are "/" or "/bin/nologin"). */
940 :
941 0 : name = c->user;
942 0 : r = get_user_creds(&name, uid, gid, home, shell, USER_CREDS_CLEAN);
943 0 : if (r < 0)
944 0 : return r;
945 :
946 0 : *user = name;
947 0 : return 0;
948 : }
949 :
950 0 : static int get_fixed_group(const ExecContext *c, const char **group, gid_t *gid) {
951 : int r;
952 : const char *name;
953 :
954 0 : assert(c);
955 :
956 0 : if (!c->group)
957 0 : return 0;
958 :
959 0 : name = c->group;
960 0 : r = get_group_creds(&name, gid, 0);
961 0 : if (r < 0)
962 0 : return r;
963 :
964 0 : *group = name;
965 0 : return 0;
966 : }
967 :
968 0 : static int get_supplementary_groups(const ExecContext *c, const char *user,
969 : const char *group, gid_t gid,
970 : gid_t **supplementary_gids, int *ngids) {
971 : char **i;
972 0 : int r, k = 0;
973 : int ngroups_max;
974 0 : bool keep_groups = false;
975 0 : gid_t *groups = NULL;
976 0 : _cleanup_free_ gid_t *l_gids = NULL;
977 :
978 0 : assert(c);
979 :
980 : /*
981 : * If user is given, then lookup GID and supplementary groups list.
982 : * We avoid NSS lookups for gid=0. Also we have to initialize groups
983 : * here and as early as possible so we keep the list of supplementary
984 : * groups of the caller.
985 : */
986 0 : if (user && gid_is_valid(gid) && gid != 0) {
987 : /* First step, initialize groups from /etc/groups */
988 0 : if (initgroups(user, gid) < 0)
989 0 : return -errno;
990 :
991 0 : keep_groups = true;
992 : }
993 :
994 0 : if (strv_isempty(c->supplementary_groups))
995 0 : return 0;
996 :
997 : /*
998 : * If SupplementaryGroups= was passed then NGROUPS_MAX has to
999 : * be positive, otherwise fail.
1000 : */
1001 0 : errno = 0;
1002 0 : ngroups_max = (int) sysconf(_SC_NGROUPS_MAX);
1003 0 : if (ngroups_max <= 0)
1004 0 : return errno_or_else(EOPNOTSUPP);
1005 :
1006 0 : l_gids = new(gid_t, ngroups_max);
1007 0 : if (!l_gids)
1008 0 : return -ENOMEM;
1009 :
1010 0 : if (keep_groups) {
1011 : /*
1012 : * Lookup the list of groups that the user belongs to, we
1013 : * avoid NSS lookups here too for gid=0.
1014 : */
1015 0 : k = ngroups_max;
1016 0 : if (getgrouplist(user, gid, l_gids, &k) < 0)
1017 0 : return -EINVAL;
1018 : } else
1019 0 : k = 0;
1020 :
1021 0 : STRV_FOREACH(i, c->supplementary_groups) {
1022 : const char *g;
1023 :
1024 0 : if (k >= ngroups_max)
1025 0 : return -E2BIG;
1026 :
1027 0 : g = *i;
1028 0 : r = get_group_creds(&g, l_gids+k, 0);
1029 0 : if (r < 0)
1030 0 : return r;
1031 :
1032 0 : k++;
1033 : }
1034 :
1035 : /*
1036 : * Sets ngids to zero to drop all supplementary groups, happens
1037 : * when we are under root and SupplementaryGroups= is empty.
1038 : */
1039 0 : if (k == 0) {
1040 0 : *ngids = 0;
1041 0 : return 0;
1042 : }
1043 :
1044 : /* Otherwise get the final list of supplementary groups */
1045 0 : groups = memdup(l_gids, sizeof(gid_t) * k);
1046 0 : if (!groups)
1047 0 : return -ENOMEM;
1048 :
1049 0 : *supplementary_gids = groups;
1050 0 : *ngids = k;
1051 :
1052 0 : groups = NULL;
1053 :
1054 0 : return 0;
1055 : }
1056 :
1057 0 : static int enforce_groups(gid_t gid, const gid_t *supplementary_gids, int ngids) {
1058 : int r;
1059 :
1060 : /* Handle SupplementaryGroups= if it is not empty */
1061 0 : if (ngids > 0) {
1062 0 : r = maybe_setgroups(ngids, supplementary_gids);
1063 0 : if (r < 0)
1064 0 : return r;
1065 : }
1066 :
1067 0 : if (gid_is_valid(gid)) {
1068 : /* Then set our gids */
1069 0 : if (setresgid(gid, gid, gid) < 0)
1070 0 : return -errno;
1071 : }
1072 :
1073 0 : return 0;
1074 : }
1075 :
1076 0 : static int enforce_user(const ExecContext *context, uid_t uid) {
1077 0 : assert(context);
1078 :
1079 0 : if (!uid_is_valid(uid))
1080 0 : return 0;
1081 :
1082 : /* Sets (but doesn't look up) the uid and make sure we keep the
1083 : * capabilities while doing so. */
1084 :
1085 0 : if (context->capability_ambient_set != 0) {
1086 :
1087 : /* First step: If we need to keep capabilities but
1088 : * drop privileges we need to make sure we keep our
1089 : * caps, while we drop privileges. */
1090 0 : if (uid != 0) {
1091 0 : int sb = context->secure_bits | 1<<SECURE_KEEP_CAPS;
1092 :
1093 0 : if (prctl(PR_GET_SECUREBITS) != sb)
1094 0 : if (prctl(PR_SET_SECUREBITS, sb) < 0)
1095 0 : return -errno;
1096 : }
1097 : }
1098 :
1099 : /* Second step: actually set the uids */
1100 0 : if (setresuid(uid, uid, uid) < 0)
1101 0 : return -errno;
1102 :
1103 : /* At this point we should have all necessary capabilities but
1104 : are otherwise a normal user. However, the caps might got
1105 : corrupted due to the setresuid() so we need clean them up
1106 : later. This is done outside of this call. */
1107 :
1108 0 : return 0;
1109 : }
1110 :
1111 : #if HAVE_PAM
1112 :
1113 0 : static int null_conv(
1114 : int num_msg,
1115 : const struct pam_message **msg,
1116 : struct pam_response **resp,
1117 : void *appdata_ptr) {
1118 :
1119 : /* We don't support conversations */
1120 :
1121 0 : return PAM_CONV_ERR;
1122 : }
1123 :
1124 : #endif
1125 :
1126 0 : static int setup_pam(
1127 : const char *name,
1128 : const char *user,
1129 : uid_t uid,
1130 : gid_t gid,
1131 : const char *tty,
1132 : char ***env,
1133 : int fds[], size_t n_fds) {
1134 :
1135 : #if HAVE_PAM
1136 :
1137 : static const struct pam_conv conv = {
1138 : .conv = null_conv,
1139 : .appdata_ptr = NULL
1140 : };
1141 :
1142 0 : _cleanup_(barrier_destroy) Barrier barrier = BARRIER_NULL;
1143 0 : pam_handle_t *handle = NULL;
1144 : sigset_t old_ss;
1145 0 : int pam_code = PAM_SUCCESS, r;
1146 0 : char **nv, **e = NULL;
1147 0 : bool close_session = false;
1148 0 : pid_t pam_pid = 0, parent_pid;
1149 0 : int flags = 0;
1150 :
1151 0 : assert(name);
1152 0 : assert(user);
1153 0 : assert(env);
1154 :
1155 : /* We set up PAM in the parent process, then fork. The child
1156 : * will then stay around until killed via PR_GET_PDEATHSIG or
1157 : * systemd via the cgroup logic. It will then remove the PAM
1158 : * session again. The parent process will exec() the actual
1159 : * daemon. We do things this way to ensure that the main PID
1160 : * of the daemon is the one we initially fork()ed. */
1161 :
1162 0 : r = barrier_create(&barrier);
1163 0 : if (r < 0)
1164 0 : goto fail;
1165 :
1166 0 : if (log_get_max_level() < LOG_DEBUG)
1167 0 : flags |= PAM_SILENT;
1168 :
1169 0 : pam_code = pam_start(name, user, &conv, &handle);
1170 0 : if (pam_code != PAM_SUCCESS) {
1171 0 : handle = NULL;
1172 0 : goto fail;
1173 : }
1174 :
1175 0 : if (!tty) {
1176 0 : _cleanup_free_ char *q = NULL;
1177 :
1178 : /* Hmm, so no TTY was explicitly passed, but an fd passed to us directly might be a TTY. Let's figure
1179 : * out if that's the case, and read the TTY off it. */
1180 :
1181 0 : if (getttyname_malloc(STDIN_FILENO, &q) >= 0)
1182 0 : tty = strjoina("/dev/", q);
1183 : }
1184 :
1185 0 : if (tty) {
1186 0 : pam_code = pam_set_item(handle, PAM_TTY, tty);
1187 0 : if (pam_code != PAM_SUCCESS)
1188 0 : goto fail;
1189 : }
1190 :
1191 0 : STRV_FOREACH(nv, *env) {
1192 0 : pam_code = pam_putenv(handle, *nv);
1193 0 : if (pam_code != PAM_SUCCESS)
1194 0 : goto fail;
1195 : }
1196 :
1197 0 : pam_code = pam_acct_mgmt(handle, flags);
1198 0 : if (pam_code != PAM_SUCCESS)
1199 0 : goto fail;
1200 :
1201 0 : pam_code = pam_open_session(handle, flags);
1202 0 : if (pam_code != PAM_SUCCESS)
1203 0 : goto fail;
1204 :
1205 0 : close_session = true;
1206 :
1207 0 : e = pam_getenvlist(handle);
1208 0 : if (!e) {
1209 0 : pam_code = PAM_BUF_ERR;
1210 0 : goto fail;
1211 : }
1212 :
1213 : /* Block SIGTERM, so that we know that it won't get lost in
1214 : * the child */
1215 :
1216 0 : assert_se(sigprocmask_many(SIG_BLOCK, &old_ss, SIGTERM, -1) >= 0);
1217 :
1218 0 : parent_pid = getpid_cached();
1219 :
1220 0 : r = safe_fork("(sd-pam)", 0, &pam_pid);
1221 0 : if (r < 0)
1222 0 : goto fail;
1223 0 : if (r == 0) {
1224 0 : int sig, ret = EXIT_PAM;
1225 :
1226 : /* The child's job is to reset the PAM session on
1227 : * termination */
1228 0 : barrier_set_role(&barrier, BARRIER_CHILD);
1229 :
1230 : /* Make sure we don't keep open the passed fds in this child. We assume that otherwise only those fds
1231 : * are open here that have been opened by PAM. */
1232 0 : (void) close_many(fds, n_fds);
1233 :
1234 : /* Drop privileges - we don't need any to pam_close_session
1235 : * and this will make PR_SET_PDEATHSIG work in most cases.
1236 : * If this fails, ignore the error - but expect sd-pam threads
1237 : * to fail to exit normally */
1238 :
1239 0 : r = maybe_setgroups(0, NULL);
1240 0 : if (r < 0)
1241 0 : log_warning_errno(r, "Failed to setgroups() in sd-pam: %m");
1242 0 : if (setresgid(gid, gid, gid) < 0)
1243 0 : log_warning_errno(errno, "Failed to setresgid() in sd-pam: %m");
1244 0 : if (setresuid(uid, uid, uid) < 0)
1245 0 : log_warning_errno(errno, "Failed to setresuid() in sd-pam: %m");
1246 :
1247 0 : (void) ignore_signals(SIGPIPE, -1);
1248 :
1249 : /* Wait until our parent died. This will only work if
1250 : * the above setresuid() succeeds, otherwise the kernel
1251 : * will not allow unprivileged parents kill their privileged
1252 : * children this way. We rely on the control groups kill logic
1253 : * to do the rest for us. */
1254 0 : if (prctl(PR_SET_PDEATHSIG, SIGTERM) < 0)
1255 0 : goto child_finish;
1256 :
1257 : /* Tell the parent that our setup is done. This is especially
1258 : * important regarding dropping privileges. Otherwise, unit
1259 : * setup might race against our setresuid(2) call.
1260 : *
1261 : * If the parent aborted, we'll detect this below, hence ignore
1262 : * return failure here. */
1263 0 : (void) barrier_place(&barrier);
1264 :
1265 : /* Check if our parent process might already have died? */
1266 0 : if (getppid() == parent_pid) {
1267 : sigset_t ss;
1268 :
1269 0 : assert_se(sigemptyset(&ss) >= 0);
1270 0 : assert_se(sigaddset(&ss, SIGTERM) >= 0);
1271 :
1272 : for (;;) {
1273 0 : if (sigwait(&ss, &sig) < 0) {
1274 0 : if (errno == EINTR)
1275 0 : continue;
1276 :
1277 0 : goto child_finish;
1278 : }
1279 :
1280 0 : assert(sig == SIGTERM);
1281 0 : break;
1282 : }
1283 : }
1284 :
1285 : /* If our parent died we'll end the session */
1286 0 : if (getppid() != parent_pid) {
1287 0 : pam_code = pam_close_session(handle, flags);
1288 0 : if (pam_code != PAM_SUCCESS)
1289 0 : goto child_finish;
1290 : }
1291 :
1292 0 : ret = 0;
1293 :
1294 0 : child_finish:
1295 0 : pam_end(handle, pam_code | flags);
1296 0 : _exit(ret);
1297 : }
1298 :
1299 0 : barrier_set_role(&barrier, BARRIER_PARENT);
1300 :
1301 : /* If the child was forked off successfully it will do all the
1302 : * cleanups, so forget about the handle here. */
1303 0 : handle = NULL;
1304 :
1305 : /* Unblock SIGTERM again in the parent */
1306 0 : assert_se(sigprocmask(SIG_SETMASK, &old_ss, NULL) >= 0);
1307 :
1308 : /* We close the log explicitly here, since the PAM modules
1309 : * might have opened it, but we don't want this fd around. */
1310 0 : closelog();
1311 :
1312 : /* Synchronously wait for the child to initialize. We don't care for
1313 : * errors as we cannot recover. However, warn loudly if it happens. */
1314 0 : if (!barrier_place_and_sync(&barrier))
1315 0 : log_error("PAM initialization failed");
1316 :
1317 0 : return strv_free_and_replace(*env, e);
1318 :
1319 0 : fail:
1320 0 : if (pam_code != PAM_SUCCESS) {
1321 0 : log_error("PAM failed: %s", pam_strerror(handle, pam_code));
1322 0 : r = -EPERM; /* PAM errors do not map to errno */
1323 : } else
1324 0 : log_error_errno(r, "PAM failed: %m");
1325 :
1326 0 : if (handle) {
1327 0 : if (close_session)
1328 0 : pam_code = pam_close_session(handle, flags);
1329 :
1330 0 : pam_end(handle, pam_code | flags);
1331 : }
1332 :
1333 0 : strv_free(e);
1334 0 : closelog();
1335 :
1336 0 : return r;
1337 : #else
1338 : return 0;
1339 : #endif
1340 : }
1341 :
1342 0 : static void rename_process_from_path(const char *path) {
1343 : char process_name[11];
1344 : const char *p;
1345 : size_t l;
1346 :
1347 : /* This resulting string must fit in 10 chars (i.e. the length
1348 : * of "/sbin/init") to look pretty in /bin/ps */
1349 :
1350 0 : p = basename(path);
1351 0 : if (isempty(p)) {
1352 0 : rename_process("(...)");
1353 0 : return;
1354 : }
1355 :
1356 0 : l = strlen(p);
1357 0 : if (l > 8) {
1358 : /* The end of the process name is usually more
1359 : * interesting, since the first bit might just be
1360 : * "systemd-" */
1361 0 : p = p + l - 8;
1362 0 : l = 8;
1363 : }
1364 :
1365 0 : process_name[0] = '(';
1366 0 : memcpy(process_name+1, p, l);
1367 0 : process_name[1+l] = ')';
1368 0 : process_name[1+l+1] = 0;
1369 :
1370 0 : rename_process(process_name);
1371 : }
1372 :
1373 0 : static bool context_has_address_families(const ExecContext *c) {
1374 0 : assert(c);
1375 :
1376 0 : return c->address_families_whitelist ||
1377 0 : !set_isempty(c->address_families);
1378 : }
1379 :
1380 0 : static bool context_has_syscall_filters(const ExecContext *c) {
1381 0 : assert(c);
1382 :
1383 0 : return c->syscall_whitelist ||
1384 0 : !hashmap_isempty(c->syscall_filter);
1385 : }
1386 :
1387 0 : static bool context_has_no_new_privileges(const ExecContext *c) {
1388 0 : assert(c);
1389 :
1390 0 : if (c->no_new_privileges)
1391 0 : return true;
1392 :
1393 0 : if (have_effective_cap(CAP_SYS_ADMIN)) /* if we are privileged, we don't need NNP */
1394 0 : return false;
1395 :
1396 : /* We need NNP if we have any form of seccomp and are unprivileged */
1397 0 : return context_has_address_families(c) ||
1398 0 : c->memory_deny_write_execute ||
1399 0 : c->restrict_realtime ||
1400 0 : c->restrict_suid_sgid ||
1401 0 : exec_context_restrict_namespaces_set(c) ||
1402 0 : c->protect_kernel_tunables ||
1403 0 : c->protect_kernel_modules ||
1404 0 : c->private_devices ||
1405 0 : context_has_syscall_filters(c) ||
1406 0 : !set_isempty(c->syscall_archs) ||
1407 0 : c->lock_personality ||
1408 0 : c->protect_hostname;
1409 : }
1410 :
1411 : #if HAVE_SECCOMP
1412 :
1413 0 : static bool skip_seccomp_unavailable(const Unit* u, const char* msg) {
1414 :
1415 0 : if (is_seccomp_available())
1416 0 : return false;
1417 :
1418 0 : log_unit_debug(u, "SECCOMP features not detected in the kernel, skipping %s", msg);
1419 0 : return true;
1420 : }
1421 :
1422 0 : static int apply_syscall_filter(const Unit* u, const ExecContext *c, bool needs_ambient_hack) {
1423 : uint32_t negative_action, default_action, action;
1424 : int r;
1425 :
1426 0 : assert(u);
1427 0 : assert(c);
1428 :
1429 0 : if (!context_has_syscall_filters(c))
1430 0 : return 0;
1431 :
1432 0 : if (skip_seccomp_unavailable(u, "SystemCallFilter="))
1433 0 : return 0;
1434 :
1435 0 : negative_action = c->syscall_errno == 0 ? scmp_act_kill_process() : SCMP_ACT_ERRNO(c->syscall_errno);
1436 :
1437 0 : if (c->syscall_whitelist) {
1438 0 : default_action = negative_action;
1439 0 : action = SCMP_ACT_ALLOW;
1440 : } else {
1441 0 : default_action = SCMP_ACT_ALLOW;
1442 0 : action = negative_action;
1443 : }
1444 :
1445 0 : if (needs_ambient_hack) {
1446 0 : r = seccomp_filter_set_add(c->syscall_filter, c->syscall_whitelist, syscall_filter_sets + SYSCALL_FILTER_SET_SETUID);
1447 0 : if (r < 0)
1448 0 : return r;
1449 : }
1450 :
1451 0 : return seccomp_load_syscall_filter_set_raw(default_action, c->syscall_filter, action, false);
1452 : }
1453 :
1454 0 : static int apply_syscall_archs(const Unit *u, const ExecContext *c) {
1455 0 : assert(u);
1456 0 : assert(c);
1457 :
1458 0 : if (set_isempty(c->syscall_archs))
1459 0 : return 0;
1460 :
1461 0 : if (skip_seccomp_unavailable(u, "SystemCallArchitectures="))
1462 0 : return 0;
1463 :
1464 0 : return seccomp_restrict_archs(c->syscall_archs);
1465 : }
1466 :
1467 0 : static int apply_address_families(const Unit* u, const ExecContext *c) {
1468 0 : assert(u);
1469 0 : assert(c);
1470 :
1471 0 : if (!context_has_address_families(c))
1472 0 : return 0;
1473 :
1474 0 : if (skip_seccomp_unavailable(u, "RestrictAddressFamilies="))
1475 0 : return 0;
1476 :
1477 0 : return seccomp_restrict_address_families(c->address_families, c->address_families_whitelist);
1478 : }
1479 :
1480 0 : static int apply_memory_deny_write_execute(const Unit* u, const ExecContext *c) {
1481 0 : assert(u);
1482 0 : assert(c);
1483 :
1484 0 : if (!c->memory_deny_write_execute)
1485 0 : return 0;
1486 :
1487 0 : if (skip_seccomp_unavailable(u, "MemoryDenyWriteExecute="))
1488 0 : return 0;
1489 :
1490 0 : return seccomp_memory_deny_write_execute();
1491 : }
1492 :
1493 0 : static int apply_restrict_realtime(const Unit* u, const ExecContext *c) {
1494 0 : assert(u);
1495 0 : assert(c);
1496 :
1497 0 : if (!c->restrict_realtime)
1498 0 : return 0;
1499 :
1500 0 : if (skip_seccomp_unavailable(u, "RestrictRealtime="))
1501 0 : return 0;
1502 :
1503 0 : return seccomp_restrict_realtime();
1504 : }
1505 :
1506 0 : static int apply_restrict_suid_sgid(const Unit* u, const ExecContext *c) {
1507 0 : assert(u);
1508 0 : assert(c);
1509 :
1510 0 : if (!c->restrict_suid_sgid)
1511 0 : return 0;
1512 :
1513 0 : if (skip_seccomp_unavailable(u, "RestrictSUIDSGID="))
1514 0 : return 0;
1515 :
1516 0 : return seccomp_restrict_suid_sgid();
1517 : }
1518 :
1519 0 : static int apply_protect_sysctl(const Unit *u, const ExecContext *c) {
1520 0 : assert(u);
1521 0 : assert(c);
1522 :
1523 : /* Turn off the legacy sysctl() system call. Many distributions turn this off while building the kernel, but
1524 : * let's protect even those systems where this is left on in the kernel. */
1525 :
1526 0 : if (!c->protect_kernel_tunables)
1527 0 : return 0;
1528 :
1529 0 : if (skip_seccomp_unavailable(u, "ProtectKernelTunables="))
1530 0 : return 0;
1531 :
1532 0 : return seccomp_protect_sysctl();
1533 : }
1534 :
1535 0 : static int apply_protect_kernel_modules(const Unit *u, const ExecContext *c) {
1536 0 : assert(u);
1537 0 : assert(c);
1538 :
1539 : /* Turn off module syscalls on ProtectKernelModules=yes */
1540 :
1541 0 : if (!c->protect_kernel_modules)
1542 0 : return 0;
1543 :
1544 0 : if (skip_seccomp_unavailable(u, "ProtectKernelModules="))
1545 0 : return 0;
1546 :
1547 0 : return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_MODULE, SCMP_ACT_ERRNO(EPERM), false);
1548 : }
1549 :
1550 0 : static int apply_private_devices(const Unit *u, const ExecContext *c) {
1551 0 : assert(u);
1552 0 : assert(c);
1553 :
1554 : /* If PrivateDevices= is set, also turn off iopl and all @raw-io syscalls. */
1555 :
1556 0 : if (!c->private_devices)
1557 0 : return 0;
1558 :
1559 0 : if (skip_seccomp_unavailable(u, "PrivateDevices="))
1560 0 : return 0;
1561 :
1562 0 : return seccomp_load_syscall_filter_set(SCMP_ACT_ALLOW, syscall_filter_sets + SYSCALL_FILTER_SET_RAW_IO, SCMP_ACT_ERRNO(EPERM), false);
1563 : }
1564 :
1565 0 : static int apply_restrict_namespaces(const Unit *u, const ExecContext *c) {
1566 0 : assert(u);
1567 0 : assert(c);
1568 :
1569 0 : if (!exec_context_restrict_namespaces_set(c))
1570 0 : return 0;
1571 :
1572 0 : if (skip_seccomp_unavailable(u, "RestrictNamespaces="))
1573 0 : return 0;
1574 :
1575 0 : return seccomp_restrict_namespaces(c->restrict_namespaces);
1576 : }
1577 :
1578 0 : static int apply_lock_personality(const Unit* u, const ExecContext *c) {
1579 : unsigned long personality;
1580 : int r;
1581 :
1582 0 : assert(u);
1583 0 : assert(c);
1584 :
1585 0 : if (!c->lock_personality)
1586 0 : return 0;
1587 :
1588 0 : if (skip_seccomp_unavailable(u, "LockPersonality="))
1589 0 : return 0;
1590 :
1591 0 : personality = c->personality;
1592 :
1593 : /* If personality is not specified, use either PER_LINUX or PER_LINUX32 depending on what is currently set. */
1594 0 : if (personality == PERSONALITY_INVALID) {
1595 :
1596 0 : r = opinionated_personality(&personality);
1597 0 : if (r < 0)
1598 0 : return r;
1599 : }
1600 :
1601 0 : return seccomp_lock_personality(personality);
1602 : }
1603 :
1604 : #endif
1605 :
1606 0 : static void do_idle_pipe_dance(int idle_pipe[static 4]) {
1607 0 : assert(idle_pipe);
1608 :
1609 0 : idle_pipe[1] = safe_close(idle_pipe[1]);
1610 0 : idle_pipe[2] = safe_close(idle_pipe[2]);
1611 :
1612 0 : if (idle_pipe[0] >= 0) {
1613 : int r;
1614 :
1615 0 : r = fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT_USEC);
1616 :
1617 0 : if (idle_pipe[3] >= 0 && r == 0 /* timeout */) {
1618 : ssize_t n;
1619 :
1620 : /* Signal systemd that we are bored and want to continue. */
1621 0 : n = write(idle_pipe[3], "x", 1);
1622 0 : if (n > 0)
1623 : /* Wait for systemd to react to the signal above. */
1624 0 : fd_wait_for_event(idle_pipe[0], POLLHUP, IDLE_TIMEOUT2_USEC);
1625 : }
1626 :
1627 0 : idle_pipe[0] = safe_close(idle_pipe[0]);
1628 :
1629 : }
1630 :
1631 0 : idle_pipe[3] = safe_close(idle_pipe[3]);
1632 0 : }
1633 :
1634 : static const char *exec_directory_env_name_to_string(ExecDirectoryType t);
1635 :
1636 0 : static int build_environment(
1637 : const Unit *u,
1638 : const ExecContext *c,
1639 : const ExecParameters *p,
1640 : size_t n_fds,
1641 : const char *home,
1642 : const char *username,
1643 : const char *shell,
1644 : dev_t journal_stream_dev,
1645 : ino_t journal_stream_ino,
1646 : char ***ret) {
1647 :
1648 0 : _cleanup_strv_free_ char **our_env = NULL;
1649 : ExecDirectoryType t;
1650 0 : size_t n_env = 0;
1651 : char *x;
1652 :
1653 0 : assert(u);
1654 0 : assert(c);
1655 0 : assert(p);
1656 0 : assert(ret);
1657 :
1658 0 : our_env = new0(char*, 14 + _EXEC_DIRECTORY_TYPE_MAX);
1659 0 : if (!our_env)
1660 0 : return -ENOMEM;
1661 :
1662 0 : if (n_fds > 0) {
1663 0 : _cleanup_free_ char *joined = NULL;
1664 :
1665 0 : if (asprintf(&x, "LISTEN_PID="PID_FMT, getpid_cached()) < 0)
1666 0 : return -ENOMEM;
1667 0 : our_env[n_env++] = x;
1668 :
1669 0 : if (asprintf(&x, "LISTEN_FDS=%zu", n_fds) < 0)
1670 0 : return -ENOMEM;
1671 0 : our_env[n_env++] = x;
1672 :
1673 0 : joined = strv_join(p->fd_names, ":");
1674 0 : if (!joined)
1675 0 : return -ENOMEM;
1676 :
1677 0 : x = strjoin("LISTEN_FDNAMES=", joined);
1678 0 : if (!x)
1679 0 : return -ENOMEM;
1680 0 : our_env[n_env++] = x;
1681 : }
1682 :
1683 0 : if ((p->flags & EXEC_SET_WATCHDOG) && p->watchdog_usec > 0) {
1684 0 : if (asprintf(&x, "WATCHDOG_PID="PID_FMT, getpid_cached()) < 0)
1685 0 : return -ENOMEM;
1686 0 : our_env[n_env++] = x;
1687 :
1688 0 : if (asprintf(&x, "WATCHDOG_USEC="USEC_FMT, p->watchdog_usec) < 0)
1689 0 : return -ENOMEM;
1690 0 : our_env[n_env++] = x;
1691 : }
1692 :
1693 : /* If this is D-Bus, tell the nss-systemd module, since it relies on being able to use D-Bus look up dynamic
1694 : * users via PID 1, possibly dead-locking the dbus daemon. This way it will not use D-Bus to resolve names, but
1695 : * check the database directly. */
1696 0 : if (p->flags & EXEC_NSS_BYPASS_BUS) {
1697 0 : x = strdup("SYSTEMD_NSS_BYPASS_BUS=1");
1698 0 : if (!x)
1699 0 : return -ENOMEM;
1700 0 : our_env[n_env++] = x;
1701 : }
1702 :
1703 0 : if (home) {
1704 0 : x = strjoin("HOME=", home);
1705 0 : if (!x)
1706 0 : return -ENOMEM;
1707 :
1708 0 : path_simplify(x + 5, true);
1709 0 : our_env[n_env++] = x;
1710 : }
1711 :
1712 0 : if (username) {
1713 0 : x = strjoin("LOGNAME=", username);
1714 0 : if (!x)
1715 0 : return -ENOMEM;
1716 0 : our_env[n_env++] = x;
1717 :
1718 0 : x = strjoin("USER=", username);
1719 0 : if (!x)
1720 0 : return -ENOMEM;
1721 0 : our_env[n_env++] = x;
1722 : }
1723 :
1724 0 : if (shell) {
1725 0 : x = strjoin("SHELL=", shell);
1726 0 : if (!x)
1727 0 : return -ENOMEM;
1728 :
1729 0 : path_simplify(x + 6, true);
1730 0 : our_env[n_env++] = x;
1731 : }
1732 :
1733 0 : if (!sd_id128_is_null(u->invocation_id)) {
1734 0 : if (asprintf(&x, "INVOCATION_ID=" SD_ID128_FORMAT_STR, SD_ID128_FORMAT_VAL(u->invocation_id)) < 0)
1735 0 : return -ENOMEM;
1736 :
1737 0 : our_env[n_env++] = x;
1738 : }
1739 :
1740 0 : if (exec_context_needs_term(c)) {
1741 0 : const char *tty_path, *term = NULL;
1742 :
1743 0 : tty_path = exec_context_tty_path(c);
1744 :
1745 : /* If we are forked off PID 1 and we are supposed to operate on /dev/console, then let's try to inherit
1746 : * the $TERM set for PID 1. This is useful for containers so that the $TERM the container manager
1747 : * passes to PID 1 ends up all the way in the console login shown. */
1748 :
1749 0 : if (path_equal(tty_path, "/dev/console") && getppid() == 1)
1750 0 : term = getenv("TERM");
1751 0 : if (!term)
1752 0 : term = default_term_for_tty(tty_path);
1753 :
1754 0 : x = strjoin("TERM=", term);
1755 0 : if (!x)
1756 0 : return -ENOMEM;
1757 0 : our_env[n_env++] = x;
1758 : }
1759 :
1760 0 : if (journal_stream_dev != 0 && journal_stream_ino != 0) {
1761 0 : if (asprintf(&x, "JOURNAL_STREAM=" DEV_FMT ":" INO_FMT, journal_stream_dev, journal_stream_ino) < 0)
1762 0 : return -ENOMEM;
1763 :
1764 0 : our_env[n_env++] = x;
1765 : }
1766 :
1767 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1768 0 : _cleanup_free_ char *pre = NULL, *joined = NULL;
1769 : const char *n;
1770 :
1771 0 : if (!p->prefix[t])
1772 0 : continue;
1773 :
1774 0 : if (strv_isempty(c->directories[t].paths))
1775 0 : continue;
1776 :
1777 0 : n = exec_directory_env_name_to_string(t);
1778 0 : if (!n)
1779 0 : continue;
1780 :
1781 0 : pre = strjoin(p->prefix[t], "/");
1782 0 : if (!pre)
1783 0 : return -ENOMEM;
1784 :
1785 0 : joined = strv_join_prefix(c->directories[t].paths, ":", pre);
1786 0 : if (!joined)
1787 0 : return -ENOMEM;
1788 :
1789 0 : x = strjoin(n, "=", joined);
1790 0 : if (!x)
1791 0 : return -ENOMEM;
1792 :
1793 0 : our_env[n_env++] = x;
1794 : }
1795 :
1796 0 : our_env[n_env++] = NULL;
1797 0 : assert(n_env <= 14 + _EXEC_DIRECTORY_TYPE_MAX);
1798 :
1799 0 : *ret = TAKE_PTR(our_env);
1800 :
1801 0 : return 0;
1802 : }
1803 :
1804 0 : static int build_pass_environment(const ExecContext *c, char ***ret) {
1805 0 : _cleanup_strv_free_ char **pass_env = NULL;
1806 0 : size_t n_env = 0, n_bufsize = 0;
1807 : char **i;
1808 :
1809 0 : STRV_FOREACH(i, c->pass_environment) {
1810 0 : _cleanup_free_ char *x = NULL;
1811 : char *v;
1812 :
1813 0 : v = getenv(*i);
1814 0 : if (!v)
1815 0 : continue;
1816 0 : x = strjoin(*i, "=", v);
1817 0 : if (!x)
1818 0 : return -ENOMEM;
1819 :
1820 0 : if (!GREEDY_REALLOC(pass_env, n_bufsize, n_env + 2))
1821 0 : return -ENOMEM;
1822 :
1823 0 : pass_env[n_env++] = TAKE_PTR(x);
1824 0 : pass_env[n_env] = NULL;
1825 : }
1826 :
1827 0 : *ret = TAKE_PTR(pass_env);
1828 :
1829 0 : return 0;
1830 : }
1831 :
1832 0 : static bool exec_needs_mount_namespace(
1833 : const ExecContext *context,
1834 : const ExecParameters *params,
1835 : const ExecRuntime *runtime) {
1836 :
1837 0 : assert(context);
1838 0 : assert(params);
1839 :
1840 0 : if (context->root_image)
1841 0 : return true;
1842 :
1843 0 : if (!strv_isempty(context->read_write_paths) ||
1844 0 : !strv_isempty(context->read_only_paths) ||
1845 0 : !strv_isempty(context->inaccessible_paths))
1846 0 : return true;
1847 :
1848 0 : if (context->n_bind_mounts > 0)
1849 0 : return true;
1850 :
1851 0 : if (context->n_temporary_filesystems > 0)
1852 0 : return true;
1853 :
1854 0 : if (!IN_SET(context->mount_flags, 0, MS_SHARED))
1855 0 : return true;
1856 :
1857 0 : if (context->private_tmp && runtime && (runtime->tmp_dir || runtime->var_tmp_dir))
1858 0 : return true;
1859 :
1860 0 : if (context->private_devices ||
1861 0 : context->private_mounts ||
1862 0 : context->protect_system != PROTECT_SYSTEM_NO ||
1863 0 : context->protect_home != PROTECT_HOME_NO ||
1864 0 : context->protect_kernel_tunables ||
1865 0 : context->protect_kernel_modules ||
1866 0 : context->protect_control_groups)
1867 0 : return true;
1868 :
1869 0 : if (context->root_directory) {
1870 : ExecDirectoryType t;
1871 :
1872 0 : if (context->mount_apivfs)
1873 0 : return true;
1874 :
1875 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
1876 0 : if (!params->prefix[t])
1877 0 : continue;
1878 :
1879 0 : if (!strv_isempty(context->directories[t].paths))
1880 0 : return true;
1881 : }
1882 : }
1883 :
1884 0 : if (context->dynamic_user &&
1885 0 : (!strv_isempty(context->directories[EXEC_DIRECTORY_STATE].paths) ||
1886 0 : !strv_isempty(context->directories[EXEC_DIRECTORY_CACHE].paths) ||
1887 0 : !strv_isempty(context->directories[EXEC_DIRECTORY_LOGS].paths)))
1888 0 : return true;
1889 :
1890 0 : return false;
1891 : }
1892 :
1893 0 : static int setup_private_users(uid_t uid, gid_t gid) {
1894 0 : _cleanup_free_ char *uid_map = NULL, *gid_map = NULL;
1895 0 : _cleanup_close_pair_ int errno_pipe[2] = { -1, -1 };
1896 0 : _cleanup_close_ int unshare_ready_fd = -1;
1897 0 : _cleanup_(sigkill_waitp) pid_t pid = 0;
1898 0 : uint64_t c = 1;
1899 : ssize_t n;
1900 : int r;
1901 :
1902 : /* Set up a user namespace and map root to root, the selected UID/GID to itself, and everything else to
1903 : * nobody. In order to be able to write this mapping we need CAP_SETUID in the original user namespace, which
1904 : * we however lack after opening the user namespace. To work around this we fork() a temporary child process,
1905 : * which waits for the parent to create the new user namespace while staying in the original namespace. The
1906 : * child then writes the UID mapping, under full privileges. The parent waits for the child to finish and
1907 : * continues execution normally. */
1908 :
1909 0 : if (uid != 0 && uid_is_valid(uid)) {
1910 0 : r = asprintf(&uid_map,
1911 : "0 0 1\n" /* Map root → root */
1912 : UID_FMT " " UID_FMT " 1\n", /* Map $UID → $UID */
1913 : uid, uid);
1914 0 : if (r < 0)
1915 0 : return -ENOMEM;
1916 : } else {
1917 0 : uid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1918 0 : if (!uid_map)
1919 0 : return -ENOMEM;
1920 : }
1921 :
1922 0 : if (gid != 0 && gid_is_valid(gid)) {
1923 0 : r = asprintf(&gid_map,
1924 : "0 0 1\n" /* Map root → root */
1925 : GID_FMT " " GID_FMT " 1\n", /* Map $GID → $GID */
1926 : gid, gid);
1927 0 : if (r < 0)
1928 0 : return -ENOMEM;
1929 : } else {
1930 0 : gid_map = strdup("0 0 1\n"); /* The case where the above is the same */
1931 0 : if (!gid_map)
1932 0 : return -ENOMEM;
1933 : }
1934 :
1935 : /* Create a communication channel so that the parent can tell the child when it finished creating the user
1936 : * namespace. */
1937 0 : unshare_ready_fd = eventfd(0, EFD_CLOEXEC);
1938 0 : if (unshare_ready_fd < 0)
1939 0 : return -errno;
1940 :
1941 : /* Create a communication channel so that the child can tell the parent a proper error code in case it
1942 : * failed. */
1943 0 : if (pipe2(errno_pipe, O_CLOEXEC) < 0)
1944 0 : return -errno;
1945 :
1946 0 : r = safe_fork("(sd-userns)", FORK_RESET_SIGNALS|FORK_DEATHSIG, &pid);
1947 0 : if (r < 0)
1948 0 : return r;
1949 0 : if (r == 0) {
1950 0 : _cleanup_close_ int fd = -1;
1951 : const char *a;
1952 : pid_t ppid;
1953 :
1954 : /* Child process, running in the original user namespace. Let's update the parent's UID/GID map from
1955 : * here, after the parent opened its own user namespace. */
1956 :
1957 0 : ppid = getppid();
1958 0 : errno_pipe[0] = safe_close(errno_pipe[0]);
1959 :
1960 : /* Wait until the parent unshared the user namespace */
1961 0 : if (read(unshare_ready_fd, &c, sizeof(c)) < 0) {
1962 0 : r = -errno;
1963 0 : goto child_fail;
1964 : }
1965 :
1966 : /* Disable the setgroups() system call in the child user namespace, for good. */
1967 0 : a = procfs_file_alloca(ppid, "setgroups");
1968 0 : fd = open(a, O_WRONLY|O_CLOEXEC);
1969 0 : if (fd < 0) {
1970 0 : if (errno != ENOENT) {
1971 0 : r = -errno;
1972 0 : goto child_fail;
1973 : }
1974 :
1975 : /* If the file is missing the kernel is too old, let's continue anyway. */
1976 : } else {
1977 0 : if (write(fd, "deny\n", 5) < 0) {
1978 0 : r = -errno;
1979 0 : goto child_fail;
1980 : }
1981 :
1982 0 : fd = safe_close(fd);
1983 : }
1984 :
1985 : /* First write the GID map */
1986 0 : a = procfs_file_alloca(ppid, "gid_map");
1987 0 : fd = open(a, O_WRONLY|O_CLOEXEC);
1988 0 : if (fd < 0) {
1989 0 : r = -errno;
1990 0 : goto child_fail;
1991 : }
1992 0 : if (write(fd, gid_map, strlen(gid_map)) < 0) {
1993 0 : r = -errno;
1994 0 : goto child_fail;
1995 : }
1996 0 : fd = safe_close(fd);
1997 :
1998 : /* The write the UID map */
1999 0 : a = procfs_file_alloca(ppid, "uid_map");
2000 0 : fd = open(a, O_WRONLY|O_CLOEXEC);
2001 0 : if (fd < 0) {
2002 0 : r = -errno;
2003 0 : goto child_fail;
2004 : }
2005 0 : if (write(fd, uid_map, strlen(uid_map)) < 0) {
2006 0 : r = -errno;
2007 0 : goto child_fail;
2008 : }
2009 :
2010 0 : _exit(EXIT_SUCCESS);
2011 :
2012 0 : child_fail:
2013 0 : (void) write(errno_pipe[1], &r, sizeof(r));
2014 0 : _exit(EXIT_FAILURE);
2015 : }
2016 :
2017 0 : errno_pipe[1] = safe_close(errno_pipe[1]);
2018 :
2019 0 : if (unshare(CLONE_NEWUSER) < 0)
2020 0 : return -errno;
2021 :
2022 : /* Let the child know that the namespace is ready now */
2023 0 : if (write(unshare_ready_fd, &c, sizeof(c)) < 0)
2024 0 : return -errno;
2025 :
2026 : /* Try to read an error code from the child */
2027 0 : n = read(errno_pipe[0], &r, sizeof(r));
2028 0 : if (n < 0)
2029 0 : return -errno;
2030 0 : if (n == sizeof(r)) { /* an error code was sent to us */
2031 0 : if (r < 0)
2032 0 : return r;
2033 0 : return -EIO;
2034 : }
2035 0 : if (n != 0) /* on success we should have read 0 bytes */
2036 0 : return -EIO;
2037 :
2038 0 : r = wait_for_terminate_and_check("(sd-userns)", pid, 0);
2039 0 : pid = 0;
2040 0 : if (r < 0)
2041 0 : return r;
2042 0 : if (r != EXIT_SUCCESS) /* If something strange happened with the child, let's consider this fatal, too */
2043 0 : return -EIO;
2044 :
2045 0 : return 0;
2046 : }
2047 :
2048 0 : static int setup_exec_directory(
2049 : const ExecContext *context,
2050 : const ExecParameters *params,
2051 : uid_t uid,
2052 : gid_t gid,
2053 : ExecDirectoryType type,
2054 : int *exit_status) {
2055 :
2056 : static const int exit_status_table[_EXEC_DIRECTORY_TYPE_MAX] = {
2057 : [EXEC_DIRECTORY_RUNTIME] = EXIT_RUNTIME_DIRECTORY,
2058 : [EXEC_DIRECTORY_STATE] = EXIT_STATE_DIRECTORY,
2059 : [EXEC_DIRECTORY_CACHE] = EXIT_CACHE_DIRECTORY,
2060 : [EXEC_DIRECTORY_LOGS] = EXIT_LOGS_DIRECTORY,
2061 : [EXEC_DIRECTORY_CONFIGURATION] = EXIT_CONFIGURATION_DIRECTORY,
2062 : };
2063 : char **rt;
2064 : int r;
2065 :
2066 0 : assert(context);
2067 0 : assert(params);
2068 0 : assert(type >= 0 && type < _EXEC_DIRECTORY_TYPE_MAX);
2069 0 : assert(exit_status);
2070 :
2071 0 : if (!params->prefix[type])
2072 0 : return 0;
2073 :
2074 0 : if (params->flags & EXEC_CHOWN_DIRECTORIES) {
2075 0 : if (!uid_is_valid(uid))
2076 0 : uid = 0;
2077 0 : if (!gid_is_valid(gid))
2078 0 : gid = 0;
2079 : }
2080 :
2081 0 : STRV_FOREACH(rt, context->directories[type].paths) {
2082 0 : _cleanup_free_ char *p = NULL, *pp = NULL;
2083 :
2084 0 : p = path_join(params->prefix[type], *rt);
2085 0 : if (!p) {
2086 0 : r = -ENOMEM;
2087 0 : goto fail;
2088 : }
2089 :
2090 0 : r = mkdir_parents_label(p, 0755);
2091 0 : if (r < 0)
2092 0 : goto fail;
2093 :
2094 0 : if (context->dynamic_user &&
2095 0 : (!IN_SET(type, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) ||
2096 0 : (type == EXEC_DIRECTORY_RUNTIME && context->runtime_directory_preserve_mode != EXEC_PRESERVE_NO))) {
2097 0 : _cleanup_free_ char *private_root = NULL;
2098 :
2099 : /* So, here's one extra complication when dealing with DynamicUser=1 units. In that
2100 : * case we want to avoid leaving a directory around fully accessible that is owned by
2101 : * a dynamic user whose UID is later on reused. To lock this down we use the same
2102 : * trick used by container managers to prohibit host users to get access to files of
2103 : * the same UID in containers: we place everything inside a directory that has an
2104 : * access mode of 0700 and is owned root:root, so that it acts as security boundary
2105 : * for unprivileged host code. We then use fs namespacing to make this directory
2106 : * permeable for the service itself.
2107 : *
2108 : * Specifically: for a service which wants a special directory "foo/" we first create
2109 : * a directory "private/" with access mode 0700 owned by root:root. Then we place
2110 : * "foo" inside of that directory (i.e. "private/foo/"), and make "foo" a symlink to
2111 : * "private/foo". This way, privileged host users can access "foo/" as usual, but
2112 : * unprivileged host users can't look into it. Inside of the namespace of the unit
2113 : * "private/" is replaced by a more liberally accessible tmpfs, into which the host's
2114 : * "private/foo/" is mounted under the same name, thus disabling the access boundary
2115 : * for the service and making sure it only gets access to the dirs it needs but no
2116 : * others. Tricky? Yes, absolutely, but it works!
2117 : *
2118 : * Note that we don't do this for EXEC_DIRECTORY_CONFIGURATION as that's assumed not
2119 : * to be owned by the service itself.
2120 : *
2121 : * Also, note that we don't do this for EXEC_DIRECTORY_RUNTIME as that's often used
2122 : * for sharing files or sockets with other services. */
2123 :
2124 0 : private_root = path_join(params->prefix[type], "private");
2125 0 : if (!private_root) {
2126 0 : r = -ENOMEM;
2127 0 : goto fail;
2128 : }
2129 :
2130 : /* First set up private root if it doesn't exist yet, with access mode 0700 and owned by root:root */
2131 0 : r = mkdir_safe_label(private_root, 0700, 0, 0, MKDIR_WARN_MODE);
2132 0 : if (r < 0)
2133 0 : goto fail;
2134 :
2135 0 : pp = path_join(private_root, *rt);
2136 0 : if (!pp) {
2137 0 : r = -ENOMEM;
2138 0 : goto fail;
2139 : }
2140 :
2141 : /* Create all directories between the configured directory and this private root, and mark them 0755 */
2142 0 : r = mkdir_parents_label(pp, 0755);
2143 0 : if (r < 0)
2144 0 : goto fail;
2145 :
2146 0 : if (is_dir(p, false) > 0 &&
2147 0 : (laccess(pp, F_OK) < 0 && errno == ENOENT)) {
2148 :
2149 : /* Hmm, the private directory doesn't exist yet, but the normal one exists? If so, move
2150 : * it over. Most likely the service has been upgraded from one that didn't use
2151 : * DynamicUser=1, to one that does. */
2152 :
2153 0 : log_info("Found pre-existing public %s= directory %s, migrating to %s.\n"
2154 : "Apparently, service previously had DynamicUser= turned off, and has now turned it on.",
2155 : exec_directory_type_to_string(type), p, pp);
2156 :
2157 0 : if (rename(p, pp) < 0) {
2158 0 : r = -errno;
2159 0 : goto fail;
2160 : }
2161 : } else {
2162 : /* Otherwise, create the actual directory for the service */
2163 :
2164 0 : r = mkdir_label(pp, context->directories[type].mode);
2165 0 : if (r < 0 && r != -EEXIST)
2166 0 : goto fail;
2167 : }
2168 :
2169 : /* And link it up from the original place */
2170 0 : r = symlink_idempotent(pp, p, true);
2171 0 : if (r < 0)
2172 0 : goto fail;
2173 :
2174 : } else {
2175 0 : _cleanup_free_ char *target = NULL;
2176 :
2177 0 : if (type != EXEC_DIRECTORY_CONFIGURATION &&
2178 0 : readlink_and_make_absolute(p, &target) >= 0) {
2179 0 : _cleanup_free_ char *q = NULL;
2180 :
2181 : /* This already exists and is a symlink? Interesting. Maybe it's one created
2182 : * by DynamicUser=1 (see above)?
2183 : *
2184 : * We do this for all directory types except for ConfigurationDirectory=,
2185 : * since they all support the private/ symlink logic at least in some
2186 : * configurations, see above. */
2187 :
2188 0 : q = path_join(params->prefix[type], "private", *rt);
2189 0 : if (!q) {
2190 0 : r = -ENOMEM;
2191 0 : goto fail;
2192 : }
2193 :
2194 0 : if (path_equal(q, target)) {
2195 :
2196 : /* Hmm, apparently DynamicUser= was once turned on for this service,
2197 : * but is no longer. Let's move the directory back up. */
2198 :
2199 0 : log_info("Found pre-existing private %s= directory %s, migrating to %s.\n"
2200 : "Apparently, service previously had DynamicUser= turned on, and has now turned it off.",
2201 : exec_directory_type_to_string(type), q, p);
2202 :
2203 0 : if (unlink(p) < 0) {
2204 0 : r = -errno;
2205 0 : goto fail;
2206 : }
2207 :
2208 0 : if (rename(q, p) < 0) {
2209 0 : r = -errno;
2210 0 : goto fail;
2211 : }
2212 : }
2213 : }
2214 :
2215 0 : r = mkdir_label(p, context->directories[type].mode);
2216 0 : if (r < 0) {
2217 0 : if (r != -EEXIST)
2218 0 : goto fail;
2219 :
2220 0 : if (type == EXEC_DIRECTORY_CONFIGURATION) {
2221 : struct stat st;
2222 :
2223 : /* Don't change the owner/access mode of the configuration directory,
2224 : * as in the common case it is not written to by a service, and shall
2225 : * not be writable. */
2226 :
2227 0 : if (stat(p, &st) < 0) {
2228 0 : r = -errno;
2229 0 : goto fail;
2230 : }
2231 :
2232 : /* Still complain if the access mode doesn't match */
2233 0 : if (((st.st_mode ^ context->directories[type].mode) & 07777) != 0)
2234 0 : log_warning("%s \'%s\' already exists but the mode is different. "
2235 : "(File system: %o %sMode: %o)",
2236 : exec_directory_type_to_string(type), *rt,
2237 : st.st_mode & 07777, exec_directory_type_to_string(type), context->directories[type].mode & 07777);
2238 :
2239 0 : continue;
2240 : }
2241 : }
2242 : }
2243 :
2244 : /* Lock down the access mode (we use chmod_and_chown() to make this idempotent. We don't
2245 : * specify UID/GID here, so that path_chown_recursive() can optimize things depending on the
2246 : * current UID/GID ownership.) */
2247 0 : r = chmod_and_chown(pp ?: p, context->directories[type].mode, UID_INVALID, GID_INVALID);
2248 0 : if (r < 0)
2249 0 : goto fail;
2250 :
2251 : /* Then, change the ownership of the whole tree, if necessary. When dynamic users are used we
2252 : * drop the suid/sgid bits, since we really don't want SUID/SGID files for dynamic UID/GID
2253 : * assignments to exist.*/
2254 0 : r = path_chown_recursive(pp ?: p, uid, gid, context->dynamic_user ? 01777 : 07777);
2255 0 : if (r < 0)
2256 0 : goto fail;
2257 : }
2258 :
2259 0 : return 0;
2260 :
2261 0 : fail:
2262 0 : *exit_status = exit_status_table[type];
2263 0 : return r;
2264 : }
2265 :
2266 : #if ENABLE_SMACK
2267 0 : static int setup_smack(
2268 : const ExecContext *context,
2269 : const ExecCommand *command) {
2270 :
2271 : int r;
2272 :
2273 0 : assert(context);
2274 0 : assert(command);
2275 :
2276 0 : if (context->smack_process_label) {
2277 0 : r = mac_smack_apply_pid(0, context->smack_process_label);
2278 0 : if (r < 0)
2279 0 : return r;
2280 : }
2281 : #ifdef SMACK_DEFAULT_PROCESS_LABEL
2282 : else {
2283 : _cleanup_free_ char *exec_label = NULL;
2284 :
2285 : r = mac_smack_read(command->path, SMACK_ATTR_EXEC, &exec_label);
2286 : if (r < 0 && !IN_SET(r, -ENODATA, -EOPNOTSUPP))
2287 : return r;
2288 :
2289 : r = mac_smack_apply_pid(0, exec_label ? : SMACK_DEFAULT_PROCESS_LABEL);
2290 : if (r < 0)
2291 : return r;
2292 : }
2293 : #endif
2294 :
2295 0 : return 0;
2296 : }
2297 : #endif
2298 :
2299 0 : static int compile_bind_mounts(
2300 : const ExecContext *context,
2301 : const ExecParameters *params,
2302 : BindMount **ret_bind_mounts,
2303 : size_t *ret_n_bind_mounts,
2304 : char ***ret_empty_directories) {
2305 :
2306 0 : _cleanup_strv_free_ char **empty_directories = NULL;
2307 : BindMount *bind_mounts;
2308 0 : size_t n, h = 0, i;
2309 : ExecDirectoryType t;
2310 : int r;
2311 :
2312 0 : assert(context);
2313 0 : assert(params);
2314 0 : assert(ret_bind_mounts);
2315 0 : assert(ret_n_bind_mounts);
2316 0 : assert(ret_empty_directories);
2317 :
2318 0 : n = context->n_bind_mounts;
2319 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2320 0 : if (!params->prefix[t])
2321 0 : continue;
2322 :
2323 0 : n += strv_length(context->directories[t].paths);
2324 : }
2325 :
2326 0 : if (n <= 0) {
2327 0 : *ret_bind_mounts = NULL;
2328 0 : *ret_n_bind_mounts = 0;
2329 0 : *ret_empty_directories = NULL;
2330 0 : return 0;
2331 : }
2332 :
2333 0 : bind_mounts = new(BindMount, n);
2334 0 : if (!bind_mounts)
2335 0 : return -ENOMEM;
2336 :
2337 0 : for (i = 0; i < context->n_bind_mounts; i++) {
2338 0 : BindMount *item = context->bind_mounts + i;
2339 : char *s, *d;
2340 :
2341 0 : s = strdup(item->source);
2342 0 : if (!s) {
2343 0 : r = -ENOMEM;
2344 0 : goto finish;
2345 : }
2346 :
2347 0 : d = strdup(item->destination);
2348 0 : if (!d) {
2349 0 : free(s);
2350 0 : r = -ENOMEM;
2351 0 : goto finish;
2352 : }
2353 :
2354 0 : bind_mounts[h++] = (BindMount) {
2355 : .source = s,
2356 : .destination = d,
2357 0 : .read_only = item->read_only,
2358 0 : .recursive = item->recursive,
2359 0 : .ignore_enoent = item->ignore_enoent,
2360 : };
2361 : }
2362 :
2363 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2364 : char **suffix;
2365 :
2366 0 : if (!params->prefix[t])
2367 0 : continue;
2368 :
2369 0 : if (strv_isempty(context->directories[t].paths))
2370 0 : continue;
2371 :
2372 0 : if (context->dynamic_user &&
2373 0 : !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2374 0 : !(context->root_directory || context->root_image)) {
2375 : char *private_root;
2376 :
2377 : /* So this is for a dynamic user, and we need to make sure the process can access its own
2378 : * directory. For that we overmount the usually inaccessible "private" subdirectory with a
2379 : * tmpfs that makes it accessible and is empty except for the submounts we do this for. */
2380 :
2381 0 : private_root = path_join(params->prefix[t], "private");
2382 0 : if (!private_root) {
2383 0 : r = -ENOMEM;
2384 0 : goto finish;
2385 : }
2386 :
2387 0 : r = strv_consume(&empty_directories, private_root);
2388 0 : if (r < 0)
2389 0 : goto finish;
2390 : }
2391 :
2392 0 : STRV_FOREACH(suffix, context->directories[t].paths) {
2393 : char *s, *d;
2394 :
2395 0 : if (context->dynamic_user &&
2396 0 : !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION))
2397 0 : s = path_join(params->prefix[t], "private", *suffix);
2398 : else
2399 0 : s = path_join(params->prefix[t], *suffix);
2400 0 : if (!s) {
2401 0 : r = -ENOMEM;
2402 0 : goto finish;
2403 : }
2404 :
2405 0 : if (context->dynamic_user &&
2406 0 : !IN_SET(t, EXEC_DIRECTORY_RUNTIME, EXEC_DIRECTORY_CONFIGURATION) &&
2407 0 : (context->root_directory || context->root_image))
2408 : /* When RootDirectory= or RootImage= are set, then the symbolic link to the private
2409 : * directory is not created on the root directory. So, let's bind-mount the directory
2410 : * on the 'non-private' place. */
2411 0 : d = path_join(params->prefix[t], *suffix);
2412 : else
2413 0 : d = strdup(s);
2414 0 : if (!d) {
2415 0 : free(s);
2416 0 : r = -ENOMEM;
2417 0 : goto finish;
2418 : }
2419 :
2420 0 : bind_mounts[h++] = (BindMount) {
2421 : .source = s,
2422 : .destination = d,
2423 : .read_only = false,
2424 0 : .nosuid = context->dynamic_user, /* don't allow suid/sgid when DynamicUser= is on */
2425 : .recursive = true,
2426 : .ignore_enoent = false,
2427 : };
2428 : }
2429 : }
2430 :
2431 0 : assert(h == n);
2432 :
2433 0 : *ret_bind_mounts = bind_mounts;
2434 0 : *ret_n_bind_mounts = n;
2435 0 : *ret_empty_directories = TAKE_PTR(empty_directories);
2436 :
2437 0 : return (int) n;
2438 :
2439 0 : finish:
2440 0 : bind_mount_free_many(bind_mounts, h);
2441 0 : return r;
2442 : }
2443 :
2444 0 : static int apply_mount_namespace(
2445 : const Unit *u,
2446 : const ExecCommand *command,
2447 : const ExecContext *context,
2448 : const ExecParameters *params,
2449 : const ExecRuntime *runtime,
2450 : char **error_path) {
2451 :
2452 0 : _cleanup_strv_free_ char **empty_directories = NULL;
2453 0 : char *tmp = NULL, *var = NULL;
2454 0 : const char *root_dir = NULL, *root_image = NULL;
2455 : NamespaceInfo ns_info;
2456 : bool needs_sandboxing;
2457 0 : BindMount *bind_mounts = NULL;
2458 0 : size_t n_bind_mounts = 0;
2459 : int r;
2460 :
2461 0 : assert(context);
2462 :
2463 : /* The runtime struct only contains the parent of the private /tmp,
2464 : * which is non-accessible to world users. Inside of it there's a /tmp
2465 : * that is sticky, and that's the one we want to use here. */
2466 :
2467 0 : if (context->private_tmp && runtime) {
2468 0 : if (runtime->tmp_dir)
2469 0 : tmp = strjoina(runtime->tmp_dir, "/tmp");
2470 0 : if (runtime->var_tmp_dir)
2471 0 : var = strjoina(runtime->var_tmp_dir, "/tmp");
2472 : }
2473 :
2474 0 : if (params->flags & EXEC_APPLY_CHROOT) {
2475 0 : root_image = context->root_image;
2476 :
2477 0 : if (!root_image)
2478 0 : root_dir = context->root_directory;
2479 : }
2480 :
2481 0 : r = compile_bind_mounts(context, params, &bind_mounts, &n_bind_mounts, &empty_directories);
2482 0 : if (r < 0)
2483 0 : return r;
2484 :
2485 0 : needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
2486 0 : if (needs_sandboxing)
2487 0 : ns_info = (NamespaceInfo) {
2488 : .ignore_protect_paths = false,
2489 0 : .private_dev = context->private_devices,
2490 0 : .protect_control_groups = context->protect_control_groups,
2491 0 : .protect_kernel_tunables = context->protect_kernel_tunables,
2492 0 : .protect_kernel_modules = context->protect_kernel_modules,
2493 0 : .protect_hostname = context->protect_hostname,
2494 0 : .mount_apivfs = context->mount_apivfs,
2495 0 : .private_mounts = context->private_mounts,
2496 : };
2497 0 : else if (!context->dynamic_user && root_dir)
2498 : /*
2499 : * If DynamicUser=no and RootDirectory= is set then lets pass a relaxed
2500 : * sandbox info, otherwise enforce it, don't ignore protected paths and
2501 : * fail if we are enable to apply the sandbox inside the mount namespace.
2502 : */
2503 0 : ns_info = (NamespaceInfo) {
2504 : .ignore_protect_paths = true,
2505 : };
2506 : else
2507 0 : ns_info = (NamespaceInfo) {};
2508 :
2509 0 : if (context->mount_flags == MS_SHARED)
2510 0 : log_unit_debug(u, "shared mount propagation hidden by other fs namespacing unit settings: ignoring");
2511 :
2512 0 : r = setup_namespace(root_dir, root_image,
2513 : &ns_info, context->read_write_paths,
2514 : needs_sandboxing ? context->read_only_paths : NULL,
2515 : needs_sandboxing ? context->inaccessible_paths : NULL,
2516 : empty_directories,
2517 : bind_mounts,
2518 : n_bind_mounts,
2519 0 : context->temporary_filesystems,
2520 : context->n_temporary_filesystems,
2521 : tmp,
2522 : var,
2523 : needs_sandboxing ? context->protect_home : PROTECT_HOME_NO,
2524 : needs_sandboxing ? context->protect_system : PROTECT_SYSTEM_NO,
2525 : context->mount_flags,
2526 : DISSECT_IMAGE_DISCARD_ON_LOOP,
2527 : error_path);
2528 :
2529 0 : bind_mount_free_many(bind_mounts, n_bind_mounts);
2530 :
2531 : /* If we couldn't set up the namespace this is probably due to a missing capability. setup_namespace() reports
2532 : * that with a special, recognizable error ENOANO. In this case, silently proceed, but only if exclusively
2533 : * sandboxing options were used, i.e. nothing such as RootDirectory= or BindMount= that would result in a
2534 : * completely different execution environment. */
2535 0 : if (r == -ENOANO) {
2536 0 : if (n_bind_mounts == 0 &&
2537 0 : context->n_temporary_filesystems == 0 &&
2538 0 : !root_dir && !root_image &&
2539 0 : !context->dynamic_user) {
2540 0 : log_unit_debug(u, "Failed to set up namespace, assuming containerized execution and ignoring.");
2541 0 : return 0;
2542 : }
2543 :
2544 0 : log_unit_debug(u, "Failed to set up namespace, and refusing to continue since the selected namespacing options alter mount environment non-trivially.\n"
2545 : "Bind mounts: %zu, temporary filesystems: %zu, root directory: %s, root image: %s, dynamic user: %s",
2546 : n_bind_mounts, context->n_temporary_filesystems, yes_no(root_dir), yes_no(root_image), yes_no(context->dynamic_user));
2547 :
2548 0 : return -EOPNOTSUPP;
2549 : }
2550 :
2551 0 : return r;
2552 : }
2553 :
2554 0 : static int apply_working_directory(
2555 : const ExecContext *context,
2556 : const ExecParameters *params,
2557 : const char *home,
2558 : int *exit_status) {
2559 :
2560 : const char *d, *wd;
2561 :
2562 0 : assert(context);
2563 0 : assert(exit_status);
2564 :
2565 0 : if (context->working_directory_home) {
2566 :
2567 0 : if (!home) {
2568 0 : *exit_status = EXIT_CHDIR;
2569 0 : return -ENXIO;
2570 : }
2571 :
2572 0 : wd = home;
2573 :
2574 0 : } else if (context->working_directory)
2575 0 : wd = context->working_directory;
2576 : else
2577 0 : wd = "/";
2578 :
2579 0 : if (params->flags & EXEC_APPLY_CHROOT)
2580 0 : d = wd;
2581 : else
2582 0 : d = prefix_roota(context->root_directory, wd);
2583 :
2584 0 : if (chdir(d) < 0 && !context->working_directory_missing_ok) {
2585 0 : *exit_status = EXIT_CHDIR;
2586 0 : return -errno;
2587 : }
2588 :
2589 0 : return 0;
2590 : }
2591 :
2592 0 : static int apply_root_directory(
2593 : const ExecContext *context,
2594 : const ExecParameters *params,
2595 : const bool needs_mount_ns,
2596 : int *exit_status) {
2597 :
2598 0 : assert(context);
2599 0 : assert(exit_status);
2600 :
2601 0 : if (params->flags & EXEC_APPLY_CHROOT) {
2602 0 : if (!needs_mount_ns && context->root_directory)
2603 0 : if (chroot(context->root_directory) < 0) {
2604 0 : *exit_status = EXIT_CHROOT;
2605 0 : return -errno;
2606 : }
2607 : }
2608 :
2609 0 : return 0;
2610 : }
2611 :
2612 0 : static int setup_keyring(
2613 : const Unit *u,
2614 : const ExecContext *context,
2615 : const ExecParameters *p,
2616 : uid_t uid, gid_t gid) {
2617 :
2618 : key_serial_t keyring;
2619 0 : int r = 0;
2620 : uid_t saved_uid;
2621 : gid_t saved_gid;
2622 :
2623 0 : assert(u);
2624 0 : assert(context);
2625 0 : assert(p);
2626 :
2627 : /* Let's set up a new per-service "session" kernel keyring for each system service. This has the benefit that
2628 : * each service runs with its own keyring shared among all processes of the service, but with no hook-up beyond
2629 : * that scope, and in particular no link to the per-UID keyring. If we don't do this the keyring will be
2630 : * automatically created on-demand and then linked to the per-UID keyring, by the kernel. The kernel's built-in
2631 : * on-demand behaviour is very appropriate for login users, but probably not so much for system services, where
2632 : * UIDs are not necessarily specific to a service but reused (at least in the case of UID 0). */
2633 :
2634 0 : if (context->keyring_mode == EXEC_KEYRING_INHERIT)
2635 0 : return 0;
2636 :
2637 : /* Acquiring a reference to the user keyring is nasty. We briefly change identity in order to get things set up
2638 : * properly by the kernel. If we don't do that then we can't create it atomically, and that sucks for parallel
2639 : * execution. This mimics what pam_keyinit does, too. Setting up session keyring, to be owned by the right user
2640 : * & group is just as nasty as acquiring a reference to the user keyring. */
2641 :
2642 0 : saved_uid = getuid();
2643 0 : saved_gid = getgid();
2644 :
2645 0 : if (gid_is_valid(gid) && gid != saved_gid) {
2646 0 : if (setregid(gid, -1) < 0)
2647 0 : return log_unit_error_errno(u, errno, "Failed to change GID for user keyring: %m");
2648 : }
2649 :
2650 0 : if (uid_is_valid(uid) && uid != saved_uid) {
2651 0 : if (setreuid(uid, -1) < 0) {
2652 0 : r = log_unit_error_errno(u, errno, "Failed to change UID for user keyring: %m");
2653 0 : goto out;
2654 : }
2655 : }
2656 :
2657 0 : keyring = keyctl(KEYCTL_JOIN_SESSION_KEYRING, 0, 0, 0, 0);
2658 0 : if (keyring == -1) {
2659 0 : if (errno == ENOSYS)
2660 0 : log_unit_debug_errno(u, errno, "Kernel keyring not supported, ignoring.");
2661 0 : else if (IN_SET(errno, EACCES, EPERM))
2662 0 : log_unit_debug_errno(u, errno, "Kernel keyring access prohibited, ignoring.");
2663 0 : else if (errno == EDQUOT)
2664 0 : log_unit_debug_errno(u, errno, "Out of kernel keyrings to allocate, ignoring.");
2665 : else
2666 0 : r = log_unit_error_errno(u, errno, "Setting up kernel keyring failed: %m");
2667 :
2668 0 : goto out;
2669 : }
2670 :
2671 : /* When requested link the user keyring into the session keyring. */
2672 0 : if (context->keyring_mode == EXEC_KEYRING_SHARED) {
2673 :
2674 0 : if (keyctl(KEYCTL_LINK,
2675 : KEY_SPEC_USER_KEYRING,
2676 : KEY_SPEC_SESSION_KEYRING, 0, 0) < 0) {
2677 0 : r = log_unit_error_errno(u, errno, "Failed to link user keyring into session keyring: %m");
2678 0 : goto out;
2679 : }
2680 : }
2681 :
2682 : /* Restore uid/gid back */
2683 0 : if (uid_is_valid(uid) && uid != saved_uid) {
2684 0 : if (setreuid(saved_uid, -1) < 0) {
2685 0 : r = log_unit_error_errno(u, errno, "Failed to change UID back for user keyring: %m");
2686 0 : goto out;
2687 : }
2688 : }
2689 :
2690 0 : if (gid_is_valid(gid) && gid != saved_gid) {
2691 0 : if (setregid(saved_gid, -1) < 0)
2692 0 : return log_unit_error_errno(u, errno, "Failed to change GID back for user keyring: %m");
2693 : }
2694 :
2695 : /* Populate they keyring with the invocation ID by default, as original saved_uid. */
2696 0 : if (!sd_id128_is_null(u->invocation_id)) {
2697 : key_serial_t key;
2698 :
2699 0 : key = add_key("user", "invocation_id", &u->invocation_id, sizeof(u->invocation_id), KEY_SPEC_SESSION_KEYRING);
2700 0 : if (key == -1)
2701 0 : log_unit_debug_errno(u, errno, "Failed to add invocation ID to keyring, ignoring: %m");
2702 : else {
2703 0 : if (keyctl(KEYCTL_SETPERM, key,
2704 : KEY_POS_VIEW|KEY_POS_READ|KEY_POS_SEARCH|
2705 : KEY_USR_VIEW|KEY_USR_READ|KEY_USR_SEARCH, 0, 0) < 0)
2706 0 : r = log_unit_error_errno(u, errno, "Failed to restrict invocation ID permission: %m");
2707 : }
2708 : }
2709 :
2710 0 : out:
2711 : /* Revert back uid & gid for the the last time, and exit */
2712 : /* no extra logging, as only the first already reported error matters */
2713 0 : if (getuid() != saved_uid)
2714 0 : (void) setreuid(saved_uid, -1);
2715 :
2716 0 : if (getgid() != saved_gid)
2717 0 : (void) setregid(saved_gid, -1);
2718 :
2719 0 : return r;
2720 : }
2721 :
2722 0 : static void append_socket_pair(int *array, size_t *n, const int pair[static 2]) {
2723 0 : assert(array);
2724 0 : assert(n);
2725 0 : assert(pair);
2726 :
2727 0 : if (pair[0] >= 0)
2728 0 : array[(*n)++] = pair[0];
2729 0 : if (pair[1] >= 0)
2730 0 : array[(*n)++] = pair[1];
2731 0 : }
2732 :
2733 0 : static int close_remaining_fds(
2734 : const ExecParameters *params,
2735 : const ExecRuntime *runtime,
2736 : const DynamicCreds *dcreds,
2737 : int user_lookup_fd,
2738 : int socket_fd,
2739 : int exec_fd,
2740 0 : int *fds, size_t n_fds) {
2741 :
2742 0 : size_t n_dont_close = 0;
2743 0 : int dont_close[n_fds + 12];
2744 :
2745 0 : assert(params);
2746 :
2747 0 : if (params->stdin_fd >= 0)
2748 0 : dont_close[n_dont_close++] = params->stdin_fd;
2749 0 : if (params->stdout_fd >= 0)
2750 0 : dont_close[n_dont_close++] = params->stdout_fd;
2751 0 : if (params->stderr_fd >= 0)
2752 0 : dont_close[n_dont_close++] = params->stderr_fd;
2753 :
2754 0 : if (socket_fd >= 0)
2755 0 : dont_close[n_dont_close++] = socket_fd;
2756 0 : if (exec_fd >= 0)
2757 0 : dont_close[n_dont_close++] = exec_fd;
2758 0 : if (n_fds > 0) {
2759 0 : memcpy(dont_close + n_dont_close, fds, sizeof(int) * n_fds);
2760 0 : n_dont_close += n_fds;
2761 : }
2762 :
2763 0 : if (runtime)
2764 0 : append_socket_pair(dont_close, &n_dont_close, runtime->netns_storage_socket);
2765 :
2766 0 : if (dcreds) {
2767 0 : if (dcreds->user)
2768 0 : append_socket_pair(dont_close, &n_dont_close, dcreds->user->storage_socket);
2769 0 : if (dcreds->group)
2770 0 : append_socket_pair(dont_close, &n_dont_close, dcreds->group->storage_socket);
2771 : }
2772 :
2773 0 : if (user_lookup_fd >= 0)
2774 0 : dont_close[n_dont_close++] = user_lookup_fd;
2775 :
2776 0 : return close_all_fds(dont_close, n_dont_close);
2777 : }
2778 :
2779 0 : static int send_user_lookup(
2780 : Unit *unit,
2781 : int user_lookup_fd,
2782 : uid_t uid,
2783 : gid_t gid) {
2784 :
2785 0 : assert(unit);
2786 :
2787 : /* Send the resolved UID/GID to PID 1 after we learnt it. We send a single datagram, containing the UID/GID
2788 : * data as well as the unit name. Note that we suppress sending this if no user/group to resolve was
2789 : * specified. */
2790 :
2791 0 : if (user_lookup_fd < 0)
2792 0 : return 0;
2793 :
2794 0 : if (!uid_is_valid(uid) && !gid_is_valid(gid))
2795 0 : return 0;
2796 :
2797 0 : if (writev(user_lookup_fd,
2798 0 : (struct iovec[]) {
2799 : IOVEC_INIT(&uid, sizeof(uid)),
2800 : IOVEC_INIT(&gid, sizeof(gid)),
2801 0 : IOVEC_INIT_STRING(unit->id) }, 3) < 0)
2802 0 : return -errno;
2803 :
2804 0 : return 0;
2805 : }
2806 :
2807 0 : static int acquire_home(const ExecContext *c, uid_t uid, const char** home, char **buf) {
2808 : int r;
2809 :
2810 0 : assert(c);
2811 0 : assert(home);
2812 0 : assert(buf);
2813 :
2814 : /* If WorkingDirectory=~ is set, try to acquire a usable home directory. */
2815 :
2816 0 : if (*home)
2817 0 : return 0;
2818 :
2819 0 : if (!c->working_directory_home)
2820 0 : return 0;
2821 :
2822 0 : r = get_home_dir(buf);
2823 0 : if (r < 0)
2824 0 : return r;
2825 :
2826 0 : *home = *buf;
2827 0 : return 1;
2828 : }
2829 :
2830 0 : static int compile_suggested_paths(const ExecContext *c, const ExecParameters *p, char ***ret) {
2831 0 : _cleanup_strv_free_ char ** list = NULL;
2832 : ExecDirectoryType t;
2833 : int r;
2834 :
2835 0 : assert(c);
2836 0 : assert(p);
2837 0 : assert(ret);
2838 :
2839 0 : assert(c->dynamic_user);
2840 :
2841 : /* Compile a list of paths that it might make sense to read the owning UID from to use as initial candidate for
2842 : * dynamic UID allocation, in order to save us from doing costly recursive chown()s of the special
2843 : * directories. */
2844 :
2845 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
2846 : char **i;
2847 :
2848 0 : if (t == EXEC_DIRECTORY_CONFIGURATION)
2849 0 : continue;
2850 :
2851 0 : if (!p->prefix[t])
2852 0 : continue;
2853 :
2854 0 : STRV_FOREACH(i, c->directories[t].paths) {
2855 : char *e;
2856 :
2857 0 : if (t == EXEC_DIRECTORY_RUNTIME)
2858 0 : e = path_join(p->prefix[t], *i);
2859 : else
2860 0 : e = path_join(p->prefix[t], "private", *i);
2861 0 : if (!e)
2862 0 : return -ENOMEM;
2863 :
2864 0 : r = strv_consume(&list, e);
2865 0 : if (r < 0)
2866 0 : return r;
2867 : }
2868 : }
2869 :
2870 0 : *ret = TAKE_PTR(list);
2871 :
2872 0 : return 0;
2873 : }
2874 :
2875 : static char *exec_command_line(char **argv);
2876 :
2877 6 : static int exec_parameters_get_cgroup_path(const ExecParameters *params, char **ret) {
2878 : bool using_subcgroup;
2879 : char *p;
2880 :
2881 6 : assert(params);
2882 6 : assert(ret);
2883 :
2884 6 : if (!params->cgroup_path)
2885 0 : return -EINVAL;
2886 :
2887 : /* If we are called for a unit where cgroup delegation is on, and the payload created its own populated
2888 : * subcgroup (which we expect it to do, after all it asked for delegation), then we cannot place the control
2889 : * processes started after the main unit's process in the unit's main cgroup because it is now an inner one,
2890 : * and inner cgroups may not contain processes. Hence, if delegation is on, and this is a control process,
2891 : * let's use ".control" as subcgroup instead. Note that we do so only for ExecStartPost=, ExecReload=,
2892 : * ExecStop=, ExecStopPost=, i.e. for the commands where the main process is already forked. For ExecStartPre=
2893 : * this is not necessary, the cgroup is still empty. We distinguish these cases with the EXEC_CONTROL_CGROUP
2894 : * flag, which is only passed for the former statements, not for the latter. */
2895 :
2896 6 : using_subcgroup = FLAGS_SET(params->flags, EXEC_CONTROL_CGROUP|EXEC_CGROUP_DELEGATE|EXEC_IS_CONTROL);
2897 6 : if (using_subcgroup)
2898 0 : p = path_join(params->cgroup_path, ".control");
2899 : else
2900 6 : p = strdup(params->cgroup_path);
2901 6 : if (!p)
2902 0 : return -ENOMEM;
2903 :
2904 6 : *ret = p;
2905 6 : return using_subcgroup;
2906 : }
2907 :
2908 0 : static int exec_child(
2909 : Unit *unit,
2910 : const ExecCommand *command,
2911 : const ExecContext *context,
2912 : const ExecParameters *params,
2913 : ExecRuntime *runtime,
2914 : DynamicCreds *dcreds,
2915 : int socket_fd,
2916 : const int named_iofds[static 3],
2917 : int *fds,
2918 : size_t n_socket_fds,
2919 : size_t n_storage_fds,
2920 : char **files_env,
2921 : int user_lookup_fd,
2922 : int *exit_status) {
2923 :
2924 0 : _cleanup_strv_free_ char **our_env = NULL, **pass_env = NULL, **accum_env = NULL, **replaced_argv = NULL;
2925 0 : int *fds_with_exec_fd, n_fds_with_exec_fd, r, ngids = 0, exec_fd = -1;
2926 0 : _cleanup_free_ gid_t *supplementary_gids = NULL;
2927 0 : const char *username = NULL, *groupname = NULL;
2928 0 : _cleanup_free_ char *home_buffer = NULL;
2929 0 : const char *home = NULL, *shell = NULL;
2930 0 : char **final_argv = NULL;
2931 0 : dev_t journal_stream_dev = 0;
2932 0 : ino_t journal_stream_ino = 0;
2933 : bool needs_sandboxing, /* Do we need to set up full sandboxing? (i.e. all namespacing, all MAC stuff, caps, yadda yadda */
2934 : needs_setuid, /* Do we need to do the actual setresuid()/setresgid() calls? */
2935 : needs_mount_namespace, /* Do we need to set up a mount namespace for this kernel? */
2936 : needs_ambient_hack; /* Do we need to apply the ambient capabilities hack? */
2937 : #if HAVE_SELINUX
2938 0 : _cleanup_free_ char *mac_selinux_context_net = NULL;
2939 0 : bool use_selinux = false;
2940 : #endif
2941 : #if ENABLE_SMACK
2942 0 : bool use_smack = false;
2943 : #endif
2944 : #if HAVE_APPARMOR
2945 : bool use_apparmor = false;
2946 : #endif
2947 0 : uid_t uid = UID_INVALID;
2948 0 : gid_t gid = GID_INVALID;
2949 : size_t n_fds;
2950 : ExecDirectoryType dt;
2951 : int secure_bits;
2952 :
2953 0 : assert(unit);
2954 0 : assert(command);
2955 0 : assert(context);
2956 0 : assert(params);
2957 0 : assert(exit_status);
2958 :
2959 0 : rename_process_from_path(command->path);
2960 :
2961 : /* We reset exactly these signals, since they are the
2962 : * only ones we set to SIG_IGN in the main daemon. All
2963 : * others we leave untouched because we set them to
2964 : * SIG_DFL or a valid handler initially, both of which
2965 : * will be demoted to SIG_DFL. */
2966 0 : (void) default_signals(SIGNALS_CRASH_HANDLER,
2967 : SIGNALS_IGNORE, -1);
2968 :
2969 0 : if (context->ignore_sigpipe)
2970 0 : (void) ignore_signals(SIGPIPE, -1);
2971 :
2972 0 : r = reset_signal_mask();
2973 0 : if (r < 0) {
2974 0 : *exit_status = EXIT_SIGNAL_MASK;
2975 0 : return log_unit_error_errno(unit, r, "Failed to set process signal mask: %m");
2976 : }
2977 :
2978 0 : if (params->idle_pipe)
2979 0 : do_idle_pipe_dance(params->idle_pipe);
2980 :
2981 : /* Close fds we don't need very early to make sure we don't block init reexecution because it cannot bind its
2982 : * sockets. Among the fds we close are the logging fds, and we want to keep them closed, so that we don't have
2983 : * any fds open we don't really want open during the transition. In order to make logging work, we switch the
2984 : * log subsystem into open_when_needed mode, so that it reopens the logs on every single log call. */
2985 :
2986 0 : log_forget_fds();
2987 0 : log_set_open_when_needed(true);
2988 :
2989 : /* In case anything used libc syslog(), close this here, too */
2990 0 : closelog();
2991 :
2992 0 : n_fds = n_socket_fds + n_storage_fds;
2993 0 : r = close_remaining_fds(params, runtime, dcreds, user_lookup_fd, socket_fd, params->exec_fd, fds, n_fds);
2994 0 : if (r < 0) {
2995 0 : *exit_status = EXIT_FDS;
2996 0 : return log_unit_error_errno(unit, r, "Failed to close unwanted file descriptors: %m");
2997 : }
2998 :
2999 0 : if (!context->same_pgrp)
3000 0 : if (setsid() < 0) {
3001 0 : *exit_status = EXIT_SETSID;
3002 0 : return log_unit_error_errno(unit, errno, "Failed to create new process session: %m");
3003 : }
3004 :
3005 0 : exec_context_tty_reset(context, params);
3006 :
3007 0 : if (unit_shall_confirm_spawn(unit)) {
3008 0 : const char *vc = params->confirm_spawn;
3009 0 : _cleanup_free_ char *cmdline = NULL;
3010 :
3011 0 : cmdline = exec_command_line(command->argv);
3012 0 : if (!cmdline) {
3013 0 : *exit_status = EXIT_MEMORY;
3014 0 : return log_oom();
3015 : }
3016 :
3017 0 : r = ask_for_confirmation(vc, unit, cmdline);
3018 0 : if (r != CONFIRM_EXECUTE) {
3019 0 : if (r == CONFIRM_PRETEND_SUCCESS) {
3020 0 : *exit_status = EXIT_SUCCESS;
3021 0 : return 0;
3022 : }
3023 0 : *exit_status = EXIT_CONFIRM;
3024 0 : log_unit_error(unit, "Execution cancelled by the user");
3025 0 : return -ECANCELED;
3026 : }
3027 : }
3028 :
3029 : /* We are about to invoke NSS and PAM modules. Let's tell them what we are doing here, maybe they care. This is
3030 : * used by nss-resolve to disable itself when we are about to start systemd-resolved, to avoid deadlocks. Note
3031 : * that these env vars do not survive the execve(), which means they really only apply to the PAM and NSS
3032 : * invocations themselves. Also note that while we'll only invoke NSS modules involved in user management they
3033 : * might internally call into other NSS modules that are involved in hostname resolution, we never know. */
3034 0 : if (setenv("SYSTEMD_ACTIVATION_UNIT", unit->id, true) != 0 ||
3035 0 : setenv("SYSTEMD_ACTIVATION_SCOPE", MANAGER_IS_SYSTEM(unit->manager) ? "system" : "user", true) != 0) {
3036 0 : *exit_status = EXIT_MEMORY;
3037 0 : return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3038 : }
3039 :
3040 0 : if (context->dynamic_user && dcreds) {
3041 0 : _cleanup_strv_free_ char **suggested_paths = NULL;
3042 :
3043 : /* On top of that, make sure we bypass our own NSS module nss-systemd comprehensively for any NSS
3044 : * checks, if DynamicUser=1 is used, as we shouldn't create a feedback loop with ourselves here.*/
3045 0 : if (putenv((char*) "SYSTEMD_NSS_DYNAMIC_BYPASS=1") != 0) {
3046 0 : *exit_status = EXIT_USER;
3047 0 : return log_unit_error_errno(unit, errno, "Failed to update environment: %m");
3048 : }
3049 :
3050 0 : r = compile_suggested_paths(context, params, &suggested_paths);
3051 0 : if (r < 0) {
3052 0 : *exit_status = EXIT_MEMORY;
3053 0 : return log_oom();
3054 : }
3055 :
3056 0 : r = dynamic_creds_realize(dcreds, suggested_paths, &uid, &gid);
3057 0 : if (r < 0) {
3058 0 : *exit_status = EXIT_USER;
3059 0 : if (r == -EILSEQ) {
3060 0 : log_unit_error(unit, "Failed to update dynamic user credentials: User or group with specified name already exists.");
3061 0 : return -EOPNOTSUPP;
3062 : }
3063 0 : return log_unit_error_errno(unit, r, "Failed to update dynamic user credentials: %m");
3064 : }
3065 :
3066 0 : if (!uid_is_valid(uid)) {
3067 0 : *exit_status = EXIT_USER;
3068 0 : log_unit_error(unit, "UID validation failed for \""UID_FMT"\"", uid);
3069 0 : return -ESRCH;
3070 : }
3071 :
3072 0 : if (!gid_is_valid(gid)) {
3073 0 : *exit_status = EXIT_USER;
3074 0 : log_unit_error(unit, "GID validation failed for \""GID_FMT"\"", gid);
3075 0 : return -ESRCH;
3076 : }
3077 :
3078 0 : if (dcreds->user)
3079 0 : username = dcreds->user->name;
3080 :
3081 : } else {
3082 0 : r = get_fixed_user(context, &username, &uid, &gid, &home, &shell);
3083 0 : if (r < 0) {
3084 0 : *exit_status = EXIT_USER;
3085 0 : return log_unit_error_errno(unit, r, "Failed to determine user credentials: %m");
3086 : }
3087 :
3088 0 : r = get_fixed_group(context, &groupname, &gid);
3089 0 : if (r < 0) {
3090 0 : *exit_status = EXIT_GROUP;
3091 0 : return log_unit_error_errno(unit, r, "Failed to determine group credentials: %m");
3092 : }
3093 : }
3094 :
3095 : /* Initialize user supplementary groups and get SupplementaryGroups= ones */
3096 0 : r = get_supplementary_groups(context, username, groupname, gid,
3097 : &supplementary_gids, &ngids);
3098 0 : if (r < 0) {
3099 0 : *exit_status = EXIT_GROUP;
3100 0 : return log_unit_error_errno(unit, r, "Failed to determine supplementary groups: %m");
3101 : }
3102 :
3103 0 : r = send_user_lookup(unit, user_lookup_fd, uid, gid);
3104 0 : if (r < 0) {
3105 0 : *exit_status = EXIT_USER;
3106 0 : return log_unit_error_errno(unit, r, "Failed to send user credentials to PID1: %m");
3107 : }
3108 :
3109 0 : user_lookup_fd = safe_close(user_lookup_fd);
3110 :
3111 0 : r = acquire_home(context, uid, &home, &home_buffer);
3112 0 : if (r < 0) {
3113 0 : *exit_status = EXIT_CHDIR;
3114 0 : return log_unit_error_errno(unit, r, "Failed to determine $HOME for user: %m");
3115 : }
3116 :
3117 : /* If a socket is connected to STDIN/STDOUT/STDERR, we
3118 : * must sure to drop O_NONBLOCK */
3119 0 : if (socket_fd >= 0)
3120 0 : (void) fd_nonblock(socket_fd, false);
3121 :
3122 : /* Journald will try to look-up our cgroup in order to populate _SYSTEMD_CGROUP and _SYSTEMD_UNIT fields.
3123 : * Hence we need to migrate to the target cgroup from init.scope before connecting to journald */
3124 0 : if (params->cgroup_path) {
3125 0 : _cleanup_free_ char *p = NULL;
3126 :
3127 0 : r = exec_parameters_get_cgroup_path(params, &p);
3128 0 : if (r < 0) {
3129 0 : *exit_status = EXIT_CGROUP;
3130 0 : return log_unit_error_errno(unit, r, "Failed to acquire cgroup path: %m");
3131 : }
3132 :
3133 0 : r = cg_attach_everywhere(params->cgroup_supported, p, 0, NULL, NULL);
3134 0 : if (r < 0) {
3135 0 : *exit_status = EXIT_CGROUP;
3136 0 : return log_unit_error_errno(unit, r, "Failed to attach to cgroup %s: %m", p);
3137 : }
3138 : }
3139 :
3140 0 : if (context->network_namespace_path && runtime && runtime->netns_storage_socket[0] >= 0) {
3141 0 : r = open_netns_path(runtime->netns_storage_socket, context->network_namespace_path);
3142 0 : if (r < 0) {
3143 0 : *exit_status = EXIT_NETWORK;
3144 0 : return log_unit_error_errno(unit, r, "Failed to open network namespace path %s: %m", context->network_namespace_path);
3145 : }
3146 : }
3147 :
3148 0 : r = setup_input(context, params, socket_fd, named_iofds);
3149 0 : if (r < 0) {
3150 0 : *exit_status = EXIT_STDIN;
3151 0 : return log_unit_error_errno(unit, r, "Failed to set up standard input: %m");
3152 : }
3153 :
3154 0 : r = setup_output(unit, context, params, STDOUT_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3155 0 : if (r < 0) {
3156 0 : *exit_status = EXIT_STDOUT;
3157 0 : return log_unit_error_errno(unit, r, "Failed to set up standard output: %m");
3158 : }
3159 :
3160 0 : r = setup_output(unit, context, params, STDERR_FILENO, socket_fd, named_iofds, basename(command->path), uid, gid, &journal_stream_dev, &journal_stream_ino);
3161 0 : if (r < 0) {
3162 0 : *exit_status = EXIT_STDERR;
3163 0 : return log_unit_error_errno(unit, r, "Failed to set up standard error output: %m");
3164 : }
3165 :
3166 0 : if (context->oom_score_adjust_set) {
3167 : /* When we can't make this change due to EPERM, then let's silently skip over it. User namespaces
3168 : * prohibit write access to this file, and we shouldn't trip up over that. */
3169 0 : r = set_oom_score_adjust(context->oom_score_adjust);
3170 0 : if (IN_SET(r, -EPERM, -EACCES))
3171 0 : log_unit_debug_errno(unit, r, "Failed to adjust OOM setting, assuming containerized execution, ignoring: %m");
3172 0 : else if (r < 0) {
3173 0 : *exit_status = EXIT_OOM_ADJUST;
3174 0 : return log_unit_error_errno(unit, r, "Failed to adjust OOM setting: %m");
3175 : }
3176 : }
3177 :
3178 0 : if (context->nice_set)
3179 0 : if (setpriority(PRIO_PROCESS, 0, context->nice) < 0) {
3180 0 : *exit_status = EXIT_NICE;
3181 0 : return log_unit_error_errno(unit, errno, "Failed to set up process scheduling priority (nice level): %m");
3182 : }
3183 :
3184 0 : if (context->cpu_sched_set) {
3185 0 : struct sched_param param = {
3186 0 : .sched_priority = context->cpu_sched_priority,
3187 : };
3188 :
3189 0 : r = sched_setscheduler(0,
3190 0 : context->cpu_sched_policy |
3191 0 : (context->cpu_sched_reset_on_fork ?
3192 0 : SCHED_RESET_ON_FORK : 0),
3193 : ¶m);
3194 0 : if (r < 0) {
3195 0 : *exit_status = EXIT_SETSCHEDULER;
3196 0 : return log_unit_error_errno(unit, errno, "Failed to set up CPU scheduling: %m");
3197 : }
3198 : }
3199 :
3200 0 : if (context->cpu_set.set)
3201 0 : if (sched_setaffinity(0, context->cpu_set.allocated, context->cpu_set.set) < 0) {
3202 0 : *exit_status = EXIT_CPUAFFINITY;
3203 0 : return log_unit_error_errno(unit, errno, "Failed to set up CPU affinity: %m");
3204 : }
3205 :
3206 0 : if (mpol_is_valid(numa_policy_get_type(&context->numa_policy))) {
3207 0 : r = apply_numa_policy(&context->numa_policy);
3208 0 : if (r == -EOPNOTSUPP)
3209 0 : log_unit_debug_errno(unit, r, "NUMA support not available, ignoring.");
3210 0 : else if (r < 0) {
3211 0 : *exit_status = EXIT_NUMA_POLICY;
3212 0 : return log_unit_error_errno(unit, r, "Failed to set NUMA memory policy: %m");
3213 : }
3214 : }
3215 :
3216 0 : if (context->ioprio_set)
3217 0 : if (ioprio_set(IOPRIO_WHO_PROCESS, 0, context->ioprio) < 0) {
3218 0 : *exit_status = EXIT_IOPRIO;
3219 0 : return log_unit_error_errno(unit, errno, "Failed to set up IO scheduling priority: %m");
3220 : }
3221 :
3222 0 : if (context->timer_slack_nsec != NSEC_INFINITY)
3223 0 : if (prctl(PR_SET_TIMERSLACK, context->timer_slack_nsec) < 0) {
3224 0 : *exit_status = EXIT_TIMERSLACK;
3225 0 : return log_unit_error_errno(unit, errno, "Failed to set up timer slack: %m");
3226 : }
3227 :
3228 0 : if (context->personality != PERSONALITY_INVALID) {
3229 0 : r = safe_personality(context->personality);
3230 0 : if (r < 0) {
3231 0 : *exit_status = EXIT_PERSONALITY;
3232 0 : return log_unit_error_errno(unit, r, "Failed to set up execution domain (personality): %m");
3233 : }
3234 : }
3235 :
3236 0 : if (context->utmp_id)
3237 0 : utmp_put_init_process(context->utmp_id, getpid_cached(), getsid(0),
3238 0 : context->tty_path,
3239 0 : context->utmp_mode == EXEC_UTMP_INIT ? INIT_PROCESS :
3240 0 : context->utmp_mode == EXEC_UTMP_LOGIN ? LOGIN_PROCESS :
3241 : USER_PROCESS,
3242 : username);
3243 :
3244 0 : if (uid_is_valid(uid)) {
3245 0 : r = chown_terminal(STDIN_FILENO, uid);
3246 0 : if (r < 0) {
3247 0 : *exit_status = EXIT_STDIN;
3248 0 : return log_unit_error_errno(unit, r, "Failed to change ownership of terminal: %m");
3249 : }
3250 : }
3251 :
3252 : /* If delegation is enabled we'll pass ownership of the cgroup to the user of the new process. On cgroup v1
3253 : * this is only about systemd's own hierarchy, i.e. not the controller hierarchies, simply because that's not
3254 : * safe. On cgroup v2 there's only one hierarchy anyway, and delegation is safe there, hence in that case only
3255 : * touch a single hierarchy too. */
3256 0 : if (params->cgroup_path && context->user && (params->flags & EXEC_CGROUP_DELEGATE)) {
3257 0 : r = cg_set_access(SYSTEMD_CGROUP_CONTROLLER, params->cgroup_path, uid, gid);
3258 0 : if (r < 0) {
3259 0 : *exit_status = EXIT_CGROUP;
3260 0 : return log_unit_error_errno(unit, r, "Failed to adjust control group access: %m");
3261 : }
3262 : }
3263 :
3264 0 : for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
3265 0 : r = setup_exec_directory(context, params, uid, gid, dt, exit_status);
3266 0 : if (r < 0)
3267 0 : return log_unit_error_errno(unit, r, "Failed to set up special execution directory in %s: %m", params->prefix[dt]);
3268 : }
3269 :
3270 0 : r = build_environment(
3271 : unit,
3272 : context,
3273 : params,
3274 : n_fds,
3275 : home,
3276 : username,
3277 : shell,
3278 : journal_stream_dev,
3279 : journal_stream_ino,
3280 : &our_env);
3281 0 : if (r < 0) {
3282 0 : *exit_status = EXIT_MEMORY;
3283 0 : return log_oom();
3284 : }
3285 :
3286 0 : r = build_pass_environment(context, &pass_env);
3287 0 : if (r < 0) {
3288 0 : *exit_status = EXIT_MEMORY;
3289 0 : return log_oom();
3290 : }
3291 :
3292 0 : accum_env = strv_env_merge(5,
3293 : params->environment,
3294 : our_env,
3295 : pass_env,
3296 : context->environment,
3297 : files_env,
3298 : NULL);
3299 0 : if (!accum_env) {
3300 0 : *exit_status = EXIT_MEMORY;
3301 0 : return log_oom();
3302 : }
3303 0 : accum_env = strv_env_clean(accum_env);
3304 :
3305 0 : (void) umask(context->umask);
3306 :
3307 0 : r = setup_keyring(unit, context, params, uid, gid);
3308 0 : if (r < 0) {
3309 0 : *exit_status = EXIT_KEYRING;
3310 0 : return log_unit_error_errno(unit, r, "Failed to set up kernel keyring: %m");
3311 : }
3312 :
3313 : /* We need sandboxing if the caller asked us to apply it and the command isn't explicitly excepted from it */
3314 0 : needs_sandboxing = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & EXEC_COMMAND_FULLY_PRIVILEGED);
3315 :
3316 : /* We need the ambient capability hack, if the caller asked us to apply it and the command is marked for it, and the kernel doesn't actually support ambient caps */
3317 0 : needs_ambient_hack = (params->flags & EXEC_APPLY_SANDBOXING) && (command->flags & EXEC_COMMAND_AMBIENT_MAGIC) && !ambient_capabilities_supported();
3318 :
3319 : /* We need setresuid() if the caller asked us to apply sandboxing and the command isn't explicitly excepted from either whole sandboxing or just setresuid() itself, and the ambient hack is not desired */
3320 0 : if (needs_ambient_hack)
3321 0 : needs_setuid = false;
3322 : else
3323 0 : needs_setuid = (params->flags & EXEC_APPLY_SANDBOXING) && !(command->flags & (EXEC_COMMAND_FULLY_PRIVILEGED|EXEC_COMMAND_NO_SETUID));
3324 :
3325 0 : if (needs_sandboxing) {
3326 : /* MAC enablement checks need to be done before a new mount ns is created, as they rely on /sys being
3327 : * present. The actual MAC context application will happen later, as late as possible, to avoid
3328 : * impacting our own code paths. */
3329 :
3330 : #if HAVE_SELINUX
3331 0 : use_selinux = mac_selinux_use();
3332 : #endif
3333 : #if ENABLE_SMACK
3334 0 : use_smack = mac_smack_use();
3335 : #endif
3336 : #if HAVE_APPARMOR
3337 : use_apparmor = mac_apparmor_use();
3338 : #endif
3339 : }
3340 :
3341 0 : if (needs_sandboxing) {
3342 : int which_failed;
3343 :
3344 : /* Let's set the resource limits before we call into PAM, so that pam_limits wins over what
3345 : * is set here. (See below.) */
3346 :
3347 0 : r = setrlimit_closest_all((const struct rlimit* const *) context->rlimit, &which_failed);
3348 0 : if (r < 0) {
3349 0 : *exit_status = EXIT_LIMITS;
3350 0 : return log_unit_error_errno(unit, r, "Failed to adjust resource limit RLIMIT_%s: %m", rlimit_to_string(which_failed));
3351 : }
3352 : }
3353 :
3354 0 : if (needs_setuid) {
3355 :
3356 : /* Let's call into PAM after we set up our own idea of resource limits to that pam_limits
3357 : * wins here. (See above.) */
3358 :
3359 0 : if (context->pam_name && username) {
3360 0 : r = setup_pam(context->pam_name, username, uid, gid, context->tty_path, &accum_env, fds, n_fds);
3361 0 : if (r < 0) {
3362 0 : *exit_status = EXIT_PAM;
3363 0 : return log_unit_error_errno(unit, r, "Failed to set up PAM session: %m");
3364 : }
3365 : }
3366 : }
3367 :
3368 0 : if ((context->private_network || context->network_namespace_path) && runtime && runtime->netns_storage_socket[0] >= 0) {
3369 :
3370 0 : if (ns_type_supported(NAMESPACE_NET)) {
3371 0 : r = setup_netns(runtime->netns_storage_socket);
3372 0 : if (r < 0) {
3373 0 : *exit_status = EXIT_NETWORK;
3374 0 : return log_unit_error_errno(unit, r, "Failed to set up network namespacing: %m");
3375 : }
3376 0 : } else if (context->network_namespace_path) {
3377 0 : *exit_status = EXIT_NETWORK;
3378 0 : return log_unit_error_errno(unit, SYNTHETIC_ERRNO(EOPNOTSUPP), "NetworkNamespacePath= is not supported, refusing.");
3379 : } else
3380 0 : log_unit_warning(unit, "PrivateNetwork=yes is configured, but the kernel does not support network namespaces, ignoring.");
3381 : }
3382 :
3383 0 : needs_mount_namespace = exec_needs_mount_namespace(context, params, runtime);
3384 0 : if (needs_mount_namespace) {
3385 0 : _cleanup_free_ char *error_path = NULL;
3386 :
3387 0 : r = apply_mount_namespace(unit, command, context, params, runtime, &error_path);
3388 0 : if (r < 0) {
3389 0 : *exit_status = EXIT_NAMESPACE;
3390 0 : return log_unit_error_errno(unit, r, "Failed to set up mount namespacing%s%s: %m",
3391 : error_path ? ": " : "", strempty(error_path));
3392 : }
3393 : }
3394 :
3395 0 : if (context->protect_hostname) {
3396 0 : if (ns_type_supported(NAMESPACE_UTS)) {
3397 0 : if (unshare(CLONE_NEWUTS) < 0) {
3398 0 : *exit_status = EXIT_NAMESPACE;
3399 0 : return log_unit_error_errno(unit, errno, "Failed to set up UTS namespacing: %m");
3400 : }
3401 : } else
3402 0 : log_unit_warning(unit, "ProtectHostname=yes is configured, but the kernel does not support UTS namespaces, ignoring namespace setup.");
3403 : #if HAVE_SECCOMP
3404 0 : r = seccomp_protect_hostname();
3405 0 : if (r < 0) {
3406 0 : *exit_status = EXIT_SECCOMP;
3407 0 : return log_unit_error_errno(unit, r, "Failed to apply hostname restrictions: %m");
3408 : }
3409 : #endif
3410 : }
3411 :
3412 : /* Drop groups as early as possbile */
3413 0 : if (needs_setuid) {
3414 0 : r = enforce_groups(gid, supplementary_gids, ngids);
3415 0 : if (r < 0) {
3416 0 : *exit_status = EXIT_GROUP;
3417 0 : return log_unit_error_errno(unit, r, "Changing group credentials failed: %m");
3418 : }
3419 : }
3420 :
3421 0 : if (needs_sandboxing) {
3422 : #if HAVE_SELINUX
3423 0 : if (use_selinux && params->selinux_context_net && socket_fd >= 0) {
3424 0 : r = mac_selinux_get_child_mls_label(socket_fd, command->path, context->selinux_context, &mac_selinux_context_net);
3425 0 : if (r < 0) {
3426 0 : *exit_status = EXIT_SELINUX_CONTEXT;
3427 0 : return log_unit_error_errno(unit, r, "Failed to determine SELinux context: %m");
3428 : }
3429 : }
3430 : #endif
3431 :
3432 0 : if (context->private_users) {
3433 0 : r = setup_private_users(uid, gid);
3434 0 : if (r < 0) {
3435 0 : *exit_status = EXIT_USER;
3436 0 : return log_unit_error_errno(unit, r, "Failed to set up user namespacing: %m");
3437 : }
3438 : }
3439 : }
3440 :
3441 : /* We repeat the fd closing here, to make sure that nothing is leaked from the PAM modules. Note that we are
3442 : * more aggressive this time since socket_fd and the netns fds we don't need anymore. We do keep the exec_fd
3443 : * however if we have it as we want to keep it open until the final execve(). */
3444 :
3445 0 : if (params->exec_fd >= 0) {
3446 0 : exec_fd = params->exec_fd;
3447 :
3448 0 : if (exec_fd < 3 + (int) n_fds) {
3449 : int moved_fd;
3450 :
3451 : /* Let's move the exec fd far up, so that it's outside of the fd range we want to pass to the
3452 : * process we are about to execute. */
3453 :
3454 0 : moved_fd = fcntl(exec_fd, F_DUPFD_CLOEXEC, 3 + (int) n_fds);
3455 0 : if (moved_fd < 0) {
3456 0 : *exit_status = EXIT_FDS;
3457 0 : return log_unit_error_errno(unit, errno, "Couldn't move exec fd up: %m");
3458 : }
3459 :
3460 0 : safe_close(exec_fd);
3461 0 : exec_fd = moved_fd;
3462 : } else {
3463 : /* This fd should be FD_CLOEXEC already, but let's make sure. */
3464 0 : r = fd_cloexec(exec_fd, true);
3465 0 : if (r < 0) {
3466 0 : *exit_status = EXIT_FDS;
3467 0 : return log_unit_error_errno(unit, r, "Failed to make exec fd FD_CLOEXEC: %m");
3468 : }
3469 : }
3470 :
3471 0 : fds_with_exec_fd = newa(int, n_fds + 1);
3472 0 : memcpy_safe(fds_with_exec_fd, fds, n_fds * sizeof(int));
3473 0 : fds_with_exec_fd[n_fds] = exec_fd;
3474 0 : n_fds_with_exec_fd = n_fds + 1;
3475 : } else {
3476 0 : fds_with_exec_fd = fds;
3477 0 : n_fds_with_exec_fd = n_fds;
3478 : }
3479 :
3480 0 : r = close_all_fds(fds_with_exec_fd, n_fds_with_exec_fd);
3481 0 : if (r >= 0)
3482 0 : r = shift_fds(fds, n_fds);
3483 0 : if (r >= 0)
3484 0 : r = flags_fds(fds, n_socket_fds, n_storage_fds, context->non_blocking);
3485 0 : if (r < 0) {
3486 0 : *exit_status = EXIT_FDS;
3487 0 : return log_unit_error_errno(unit, r, "Failed to adjust passed file descriptors: %m");
3488 : }
3489 :
3490 : /* At this point, the fds we want to pass to the program are all ready and set up, with O_CLOEXEC turned off
3491 : * and at the right fd numbers. The are no other fds open, with one exception: the exec_fd if it is defined,
3492 : * and it has O_CLOEXEC set, after all we want it to be closed by the execve(), so that our parent knows we
3493 : * came this far. */
3494 :
3495 0 : secure_bits = context->secure_bits;
3496 :
3497 0 : if (needs_sandboxing) {
3498 : uint64_t bset;
3499 :
3500 : /* Set the RTPRIO resource limit to 0, but only if nothing else was explicitly
3501 : * requested. (Note this is placed after the general resource limit initialization, see
3502 : * above, in order to take precedence.) */
3503 0 : if (context->restrict_realtime && !context->rlimit[RLIMIT_RTPRIO]) {
3504 0 : if (setrlimit(RLIMIT_RTPRIO, &RLIMIT_MAKE_CONST(0)) < 0) {
3505 0 : *exit_status = EXIT_LIMITS;
3506 0 : return log_unit_error_errno(unit, errno, "Failed to adjust RLIMIT_RTPRIO resource limit: %m");
3507 : }
3508 : }
3509 :
3510 : #if ENABLE_SMACK
3511 : /* LSM Smack needs the capability CAP_MAC_ADMIN to change the current execution security context of the
3512 : * process. This is the latest place before dropping capabilities. Other MAC context are set later. */
3513 0 : if (use_smack) {
3514 0 : r = setup_smack(context, command);
3515 0 : if (r < 0) {
3516 0 : *exit_status = EXIT_SMACK_PROCESS_LABEL;
3517 0 : return log_unit_error_errno(unit, r, "Failed to set SMACK process label: %m");
3518 : }
3519 : }
3520 : #endif
3521 :
3522 0 : bset = context->capability_bounding_set;
3523 : /* If the ambient caps hack is enabled (which means the kernel can't do them, and the user asked for
3524 : * our magic fallback), then let's add some extra caps, so that the service can drop privs of its own,
3525 : * instead of us doing that */
3526 0 : if (needs_ambient_hack)
3527 0 : bset |= (UINT64_C(1) << CAP_SETPCAP) |
3528 : (UINT64_C(1) << CAP_SETUID) |
3529 : (UINT64_C(1) << CAP_SETGID);
3530 :
3531 0 : if (!cap_test_all(bset)) {
3532 0 : r = capability_bounding_set_drop(bset, false);
3533 0 : if (r < 0) {
3534 0 : *exit_status = EXIT_CAPABILITIES;
3535 0 : return log_unit_error_errno(unit, r, "Failed to drop capabilities: %m");
3536 : }
3537 : }
3538 :
3539 : /* This is done before enforce_user, but ambient set
3540 : * does not survive over setresuid() if keep_caps is not set. */
3541 0 : if (!needs_ambient_hack &&
3542 0 : context->capability_ambient_set != 0) {
3543 0 : r = capability_ambient_set_apply(context->capability_ambient_set, true);
3544 0 : if (r < 0) {
3545 0 : *exit_status = EXIT_CAPABILITIES;
3546 0 : return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (before UID change): %m");
3547 : }
3548 : }
3549 : }
3550 :
3551 : /* chroot to root directory first, before we lose the ability to chroot */
3552 0 : r = apply_root_directory(context, params, needs_mount_namespace, exit_status);
3553 0 : if (r < 0)
3554 0 : return log_unit_error_errno(unit, r, "Chrooting to the requested root directory failed: %m");
3555 :
3556 0 : if (needs_setuid) {
3557 0 : if (uid_is_valid(uid)) {
3558 0 : r = enforce_user(context, uid);
3559 0 : if (r < 0) {
3560 0 : *exit_status = EXIT_USER;
3561 0 : return log_unit_error_errno(unit, r, "Failed to change UID to " UID_FMT ": %m", uid);
3562 : }
3563 :
3564 0 : if (!needs_ambient_hack &&
3565 0 : context->capability_ambient_set != 0) {
3566 :
3567 : /* Fix the ambient capabilities after user change. */
3568 0 : r = capability_ambient_set_apply(context->capability_ambient_set, false);
3569 0 : if (r < 0) {
3570 0 : *exit_status = EXIT_CAPABILITIES;
3571 0 : return log_unit_error_errno(unit, r, "Failed to apply ambient capabilities (after UID change): %m");
3572 : }
3573 :
3574 : /* If we were asked to change user and ambient capabilities
3575 : * were requested, we had to add keep-caps to the securebits
3576 : * so that we would maintain the inherited capability set
3577 : * through the setresuid(). Make sure that the bit is added
3578 : * also to the context secure_bits so that we don't try to
3579 : * drop the bit away next. */
3580 :
3581 0 : secure_bits |= 1<<SECURE_KEEP_CAPS;
3582 : }
3583 : }
3584 : }
3585 :
3586 : /* Apply working directory here, because the working directory might be on NFS and only the user running
3587 : * this service might have the correct privilege to change to the working directory */
3588 0 : r = apply_working_directory(context, params, home, exit_status);
3589 0 : if (r < 0)
3590 0 : return log_unit_error_errno(unit, r, "Changing to the requested working directory failed: %m");
3591 :
3592 0 : if (needs_sandboxing) {
3593 : /* Apply other MAC contexts late, but before seccomp syscall filtering, as those should really be last to
3594 : * influence our own codepaths as little as possible. Moreover, applying MAC contexts usually requires
3595 : * syscalls that are subject to seccomp filtering, hence should probably be applied before the syscalls
3596 : * are restricted. */
3597 :
3598 : #if HAVE_SELINUX
3599 0 : if (use_selinux) {
3600 0 : char *exec_context = mac_selinux_context_net ?: context->selinux_context;
3601 :
3602 0 : if (exec_context) {
3603 0 : r = setexeccon(exec_context);
3604 0 : if (r < 0) {
3605 0 : *exit_status = EXIT_SELINUX_CONTEXT;
3606 0 : return log_unit_error_errno(unit, r, "Failed to change SELinux context to %s: %m", exec_context);
3607 : }
3608 : }
3609 : }
3610 : #endif
3611 :
3612 : #if HAVE_APPARMOR
3613 : if (use_apparmor && context->apparmor_profile) {
3614 : r = aa_change_onexec(context->apparmor_profile);
3615 : if (r < 0 && !context->apparmor_profile_ignore) {
3616 : *exit_status = EXIT_APPARMOR_PROFILE;
3617 : return log_unit_error_errno(unit, errno, "Failed to prepare AppArmor profile change to %s: %m", context->apparmor_profile);
3618 : }
3619 : }
3620 : #endif
3621 :
3622 : /* PR_GET_SECUREBITS is not privileged, while PR_SET_SECUREBITS is. So to suppress potential EPERMs
3623 : * we'll try not to call PR_SET_SECUREBITS unless necessary. */
3624 0 : if (prctl(PR_GET_SECUREBITS) != secure_bits)
3625 0 : if (prctl(PR_SET_SECUREBITS, secure_bits) < 0) {
3626 0 : *exit_status = EXIT_SECUREBITS;
3627 0 : return log_unit_error_errno(unit, errno, "Failed to set process secure bits: %m");
3628 : }
3629 :
3630 0 : if (context_has_no_new_privileges(context))
3631 0 : if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0) < 0) {
3632 0 : *exit_status = EXIT_NO_NEW_PRIVILEGES;
3633 0 : return log_unit_error_errno(unit, errno, "Failed to disable new privileges: %m");
3634 : }
3635 :
3636 : #if HAVE_SECCOMP
3637 0 : r = apply_address_families(unit, context);
3638 0 : if (r < 0) {
3639 0 : *exit_status = EXIT_ADDRESS_FAMILIES;
3640 0 : return log_unit_error_errno(unit, r, "Failed to restrict address families: %m");
3641 : }
3642 :
3643 0 : r = apply_memory_deny_write_execute(unit, context);
3644 0 : if (r < 0) {
3645 0 : *exit_status = EXIT_SECCOMP;
3646 0 : return log_unit_error_errno(unit, r, "Failed to disable writing to executable memory: %m");
3647 : }
3648 :
3649 0 : r = apply_restrict_realtime(unit, context);
3650 0 : if (r < 0) {
3651 0 : *exit_status = EXIT_SECCOMP;
3652 0 : return log_unit_error_errno(unit, r, "Failed to apply realtime restrictions: %m");
3653 : }
3654 :
3655 0 : r = apply_restrict_suid_sgid(unit, context);
3656 0 : if (r < 0) {
3657 0 : *exit_status = EXIT_SECCOMP;
3658 0 : return log_unit_error_errno(unit, r, "Failed to apply SUID/SGID restrictions: %m");
3659 : }
3660 :
3661 0 : r = apply_restrict_namespaces(unit, context);
3662 0 : if (r < 0) {
3663 0 : *exit_status = EXIT_SECCOMP;
3664 0 : return log_unit_error_errno(unit, r, "Failed to apply namespace restrictions: %m");
3665 : }
3666 :
3667 0 : r = apply_protect_sysctl(unit, context);
3668 0 : if (r < 0) {
3669 0 : *exit_status = EXIT_SECCOMP;
3670 0 : return log_unit_error_errno(unit, r, "Failed to apply sysctl restrictions: %m");
3671 : }
3672 :
3673 0 : r = apply_protect_kernel_modules(unit, context);
3674 0 : if (r < 0) {
3675 0 : *exit_status = EXIT_SECCOMP;
3676 0 : return log_unit_error_errno(unit, r, "Failed to apply module loading restrictions: %m");
3677 : }
3678 :
3679 0 : r = apply_private_devices(unit, context);
3680 0 : if (r < 0) {
3681 0 : *exit_status = EXIT_SECCOMP;
3682 0 : return log_unit_error_errno(unit, r, "Failed to set up private devices: %m");
3683 : }
3684 :
3685 0 : r = apply_syscall_archs(unit, context);
3686 0 : if (r < 0) {
3687 0 : *exit_status = EXIT_SECCOMP;
3688 0 : return log_unit_error_errno(unit, r, "Failed to apply syscall architecture restrictions: %m");
3689 : }
3690 :
3691 0 : r = apply_lock_personality(unit, context);
3692 0 : if (r < 0) {
3693 0 : *exit_status = EXIT_SECCOMP;
3694 0 : return log_unit_error_errno(unit, r, "Failed to lock personalities: %m");
3695 : }
3696 :
3697 : /* This really should remain the last step before the execve(), to make sure our own code is unaffected
3698 : * by the filter as little as possible. */
3699 0 : r = apply_syscall_filter(unit, context, needs_ambient_hack);
3700 0 : if (r < 0) {
3701 0 : *exit_status = EXIT_SECCOMP;
3702 0 : return log_unit_error_errno(unit, r, "Failed to apply system call filters: %m");
3703 : }
3704 : #endif
3705 : }
3706 :
3707 0 : if (!strv_isempty(context->unset_environment)) {
3708 0 : char **ee = NULL;
3709 :
3710 0 : ee = strv_env_delete(accum_env, 1, context->unset_environment);
3711 0 : if (!ee) {
3712 0 : *exit_status = EXIT_MEMORY;
3713 0 : return log_oom();
3714 : }
3715 :
3716 0 : strv_free_and_replace(accum_env, ee);
3717 : }
3718 :
3719 0 : if (!FLAGS_SET(command->flags, EXEC_COMMAND_NO_ENV_EXPAND)) {
3720 0 : replaced_argv = replace_env_argv(command->argv, accum_env);
3721 0 : if (!replaced_argv) {
3722 0 : *exit_status = EXIT_MEMORY;
3723 0 : return log_oom();
3724 : }
3725 0 : final_argv = replaced_argv;
3726 : } else
3727 0 : final_argv = command->argv;
3728 :
3729 0 : if (DEBUG_LOGGING) {
3730 0 : _cleanup_free_ char *line;
3731 :
3732 0 : line = exec_command_line(final_argv);
3733 0 : if (line)
3734 0 : log_struct(LOG_DEBUG,
3735 : "EXECUTABLE=%s", command->path,
3736 : LOG_UNIT_MESSAGE(unit, "Executing: %s", line),
3737 : LOG_UNIT_ID(unit),
3738 : LOG_UNIT_INVOCATION_ID(unit));
3739 : }
3740 :
3741 0 : if (exec_fd >= 0) {
3742 0 : uint8_t hot = 1;
3743 :
3744 : /* We have finished with all our initializations. Let's now let the manager know that. From this point
3745 : * on, if the manager sees POLLHUP on the exec_fd, then execve() was successful. */
3746 :
3747 0 : if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3748 0 : *exit_status = EXIT_EXEC;
3749 0 : return log_unit_error_errno(unit, errno, "Failed to enable exec_fd: %m");
3750 : }
3751 : }
3752 :
3753 0 : execve(command->path, final_argv, accum_env);
3754 0 : r = -errno;
3755 :
3756 0 : if (exec_fd >= 0) {
3757 0 : uint8_t hot = 0;
3758 :
3759 : /* The execve() failed. This means the exec_fd is still open. Which means we need to tell the manager
3760 : * that POLLHUP on it no longer means execve() succeeded. */
3761 :
3762 0 : if (write(exec_fd, &hot, sizeof(hot)) < 0) {
3763 0 : *exit_status = EXIT_EXEC;
3764 0 : return log_unit_error_errno(unit, errno, "Failed to disable exec_fd: %m");
3765 : }
3766 : }
3767 :
3768 0 : if (r == -ENOENT && (command->flags & EXEC_COMMAND_IGNORE_FAILURE)) {
3769 0 : log_struct_errno(LOG_INFO, r,
3770 : "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3771 : LOG_UNIT_ID(unit),
3772 : LOG_UNIT_INVOCATION_ID(unit),
3773 : LOG_UNIT_MESSAGE(unit, "Executable %s missing, skipping: %m",
3774 : command->path),
3775 : "EXECUTABLE=%s", command->path);
3776 0 : return 0;
3777 : }
3778 :
3779 0 : *exit_status = EXIT_EXEC;
3780 0 : return log_unit_error_errno(unit, r, "Failed to execute command: %m");
3781 : }
3782 :
3783 : static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l);
3784 : static int exec_context_named_iofds(const ExecContext *c, const ExecParameters *p, int named_iofds[static 3]);
3785 :
3786 6 : int exec_spawn(Unit *unit,
3787 : ExecCommand *command,
3788 : const ExecContext *context,
3789 : const ExecParameters *params,
3790 : ExecRuntime *runtime,
3791 : DynamicCreds *dcreds,
3792 : pid_t *ret) {
3793 :
3794 6 : int socket_fd, r, named_iofds[3] = { -1, -1, -1 }, *fds = NULL;
3795 6 : _cleanup_free_ char *subcgroup_path = NULL;
3796 6 : _cleanup_strv_free_ char **files_env = NULL;
3797 6 : size_t n_storage_fds = 0, n_socket_fds = 0;
3798 6 : _cleanup_free_ char *line = NULL;
3799 : pid_t pid;
3800 :
3801 6 : assert(unit);
3802 6 : assert(command);
3803 6 : assert(context);
3804 6 : assert(ret);
3805 6 : assert(params);
3806 6 : assert(params->fds || (params->n_socket_fds + params->n_storage_fds <= 0));
3807 :
3808 6 : if (context->std_input == EXEC_INPUT_SOCKET ||
3809 6 : context->std_output == EXEC_OUTPUT_SOCKET ||
3810 6 : context->std_error == EXEC_OUTPUT_SOCKET) {
3811 :
3812 0 : if (params->n_socket_fds > 1) {
3813 0 : log_unit_error(unit, "Got more than one socket.");
3814 0 : return -EINVAL;
3815 : }
3816 :
3817 0 : if (params->n_socket_fds == 0) {
3818 0 : log_unit_error(unit, "Got no socket.");
3819 0 : return -EINVAL;
3820 : }
3821 :
3822 0 : socket_fd = params->fds[0];
3823 : } else {
3824 6 : socket_fd = -1;
3825 6 : fds = params->fds;
3826 6 : n_socket_fds = params->n_socket_fds;
3827 6 : n_storage_fds = params->n_storage_fds;
3828 : }
3829 :
3830 6 : r = exec_context_named_iofds(context, params, named_iofds);
3831 6 : if (r < 0)
3832 0 : return log_unit_error_errno(unit, r, "Failed to load a named file descriptor: %m");
3833 :
3834 6 : r = exec_context_load_environment(unit, context, &files_env);
3835 6 : if (r < 0)
3836 0 : return log_unit_error_errno(unit, r, "Failed to load environment files: %m");
3837 :
3838 6 : line = exec_command_line(command->argv);
3839 6 : if (!line)
3840 0 : return log_oom();
3841 :
3842 6 : log_struct(LOG_DEBUG,
3843 : LOG_UNIT_MESSAGE(unit, "About to execute: %s", line),
3844 : "EXECUTABLE=%s", command->path,
3845 : LOG_UNIT_ID(unit),
3846 : LOG_UNIT_INVOCATION_ID(unit));
3847 :
3848 6 : if (params->cgroup_path) {
3849 6 : r = exec_parameters_get_cgroup_path(params, &subcgroup_path);
3850 6 : if (r < 0)
3851 0 : return log_unit_error_errno(unit, r, "Failed to acquire subcgroup path: %m");
3852 6 : if (r > 0) { /* We are using a child cgroup */
3853 0 : r = cg_create(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path);
3854 0 : if (r < 0)
3855 0 : return log_unit_error_errno(unit, r, "Failed to create control group '%s': %m", subcgroup_path);
3856 : }
3857 : }
3858 :
3859 6 : pid = fork();
3860 6 : if (pid < 0)
3861 0 : return log_unit_error_errno(unit, errno, "Failed to fork: %m");
3862 :
3863 6 : if (pid == 0) {
3864 0 : int exit_status = EXIT_SUCCESS;
3865 :
3866 0 : r = exec_child(unit,
3867 : command,
3868 : context,
3869 : params,
3870 : runtime,
3871 : dcreds,
3872 : socket_fd,
3873 : named_iofds,
3874 : fds,
3875 : n_socket_fds,
3876 : n_storage_fds,
3877 : files_env,
3878 0 : unit->manager->user_lookup_fds[1],
3879 : &exit_status);
3880 :
3881 0 : if (r < 0) {
3882 : const char *status =
3883 0 : exit_status_to_string(exit_status,
3884 : EXIT_STATUS_LIBC | EXIT_STATUS_SYSTEMD);
3885 :
3886 0 : log_struct_errno(LOG_ERR, r,
3887 : "MESSAGE_ID=" SD_MESSAGE_SPAWN_FAILED_STR,
3888 : LOG_UNIT_ID(unit),
3889 : LOG_UNIT_INVOCATION_ID(unit),
3890 : LOG_UNIT_MESSAGE(unit, "Failed at step %s spawning %s: %m",
3891 : status, command->path),
3892 : "EXECUTABLE=%s", command->path);
3893 : }
3894 :
3895 0 : _exit(exit_status);
3896 : }
3897 :
3898 6 : log_unit_debug(unit, "Forked %s as "PID_FMT, command->path, pid);
3899 :
3900 : /* We add the new process to the cgroup both in the child (so that we can be sure that no user code is ever
3901 : * executed outside of the cgroup) and in the parent (so that we can be sure that when we kill the cgroup the
3902 : * process will be killed too). */
3903 6 : if (subcgroup_path)
3904 6 : (void) cg_attach(SYSTEMD_CGROUP_CONTROLLER, subcgroup_path, pid);
3905 :
3906 6 : exec_status_start(&command->exec_status, pid);
3907 :
3908 6 : *ret = pid;
3909 6 : return 0;
3910 : }
3911 :
3912 559 : void exec_context_init(ExecContext *c) {
3913 : ExecDirectoryType i;
3914 :
3915 559 : assert(c);
3916 :
3917 559 : c->umask = 0022;
3918 559 : c->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 0);
3919 559 : c->cpu_sched_policy = SCHED_OTHER;
3920 559 : c->syslog_priority = LOG_DAEMON|LOG_INFO;
3921 559 : c->syslog_level_prefix = true;
3922 559 : c->ignore_sigpipe = true;
3923 559 : c->timer_slack_nsec = NSEC_INFINITY;
3924 559 : c->personality = PERSONALITY_INVALID;
3925 3354 : for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3926 2795 : c->directories[i].mode = 0755;
3927 559 : c->capability_bounding_set = CAP_ALL;
3928 : assert_cc(NAMESPACE_FLAGS_INITIAL != NAMESPACE_FLAGS_ALL);
3929 559 : c->restrict_namespaces = NAMESPACE_FLAGS_INITIAL;
3930 559 : c->log_level_max = -1;
3931 559 : numa_policy_reset(&c->numa_policy);
3932 559 : }
3933 :
3934 559 : void exec_context_done(ExecContext *c) {
3935 : ExecDirectoryType i;
3936 : size_t l;
3937 :
3938 559 : assert(c);
3939 :
3940 559 : c->environment = strv_free(c->environment);
3941 559 : c->environment_files = strv_free(c->environment_files);
3942 559 : c->pass_environment = strv_free(c->pass_environment);
3943 559 : c->unset_environment = strv_free(c->unset_environment);
3944 :
3945 559 : rlimit_free_all(c->rlimit);
3946 :
3947 2236 : for (l = 0; l < 3; l++) {
3948 1677 : c->stdio_fdname[l] = mfree(c->stdio_fdname[l]);
3949 1677 : c->stdio_file[l] = mfree(c->stdio_file[l]);
3950 : }
3951 :
3952 559 : c->working_directory = mfree(c->working_directory);
3953 559 : c->root_directory = mfree(c->root_directory);
3954 559 : c->root_image = mfree(c->root_image);
3955 559 : c->tty_path = mfree(c->tty_path);
3956 559 : c->syslog_identifier = mfree(c->syslog_identifier);
3957 559 : c->user = mfree(c->user);
3958 559 : c->group = mfree(c->group);
3959 :
3960 559 : c->supplementary_groups = strv_free(c->supplementary_groups);
3961 :
3962 559 : c->pam_name = mfree(c->pam_name);
3963 :
3964 559 : c->read_only_paths = strv_free(c->read_only_paths);
3965 559 : c->read_write_paths = strv_free(c->read_write_paths);
3966 559 : c->inaccessible_paths = strv_free(c->inaccessible_paths);
3967 :
3968 559 : bind_mount_free_many(c->bind_mounts, c->n_bind_mounts);
3969 559 : c->bind_mounts = NULL;
3970 559 : c->n_bind_mounts = 0;
3971 559 : temporary_filesystem_free_many(c->temporary_filesystems, c->n_temporary_filesystems);
3972 559 : c->temporary_filesystems = NULL;
3973 559 : c->n_temporary_filesystems = 0;
3974 :
3975 559 : cpu_set_reset(&c->cpu_set);
3976 559 : numa_policy_reset(&c->numa_policy);
3977 :
3978 559 : c->utmp_id = mfree(c->utmp_id);
3979 559 : c->selinux_context = mfree(c->selinux_context);
3980 559 : c->apparmor_profile = mfree(c->apparmor_profile);
3981 559 : c->smack_process_label = mfree(c->smack_process_label);
3982 :
3983 559 : c->syscall_filter = hashmap_free(c->syscall_filter);
3984 559 : c->syscall_archs = set_free(c->syscall_archs);
3985 559 : c->address_families = set_free(c->address_families);
3986 :
3987 3354 : for (i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++)
3988 2795 : c->directories[i].paths = strv_free(c->directories[i].paths);
3989 :
3990 559 : c->log_level_max = -1;
3991 :
3992 559 : exec_context_free_log_extra_fields(c);
3993 :
3994 559 : c->log_rate_limit_interval_usec = 0;
3995 559 : c->log_rate_limit_burst = 0;
3996 :
3997 559 : c->stdin_data = mfree(c->stdin_data);
3998 559 : c->stdin_data_size = 0;
3999 :
4000 559 : c->network_namespace_path = mfree(c->network_namespace_path);
4001 559 : }
4002 :
4003 0 : int exec_context_destroy_runtime_directory(const ExecContext *c, const char *runtime_prefix) {
4004 : char **i;
4005 :
4006 0 : assert(c);
4007 :
4008 0 : if (!runtime_prefix)
4009 0 : return 0;
4010 :
4011 0 : STRV_FOREACH(i, c->directories[EXEC_DIRECTORY_RUNTIME].paths) {
4012 0 : _cleanup_free_ char *p;
4013 :
4014 0 : p = path_join(runtime_prefix, *i);
4015 0 : if (!p)
4016 0 : return -ENOMEM;
4017 :
4018 : /* We execute this synchronously, since we need to be sure this is gone when we start the
4019 : * service next. */
4020 0 : (void) rm_rf(p, REMOVE_ROOT);
4021 : }
4022 :
4023 0 : return 0;
4024 : }
4025 :
4026 1530 : static void exec_command_done(ExecCommand *c) {
4027 1530 : assert(c);
4028 :
4029 1530 : c->path = mfree(c->path);
4030 1530 : c->argv = strv_free(c->argv);
4031 1530 : }
4032 :
4033 513 : void exec_command_done_array(ExecCommand *c, size_t n) {
4034 : size_t i;
4035 :
4036 1986 : for (i = 0; i < n; i++)
4037 1473 : exec_command_done(c+i);
4038 513 : }
4039 :
4040 325 : ExecCommand* exec_command_free_list(ExecCommand *c) {
4041 : ExecCommand *i;
4042 :
4043 382 : while ((i = c)) {
4044 57 : LIST_REMOVE(command, c, i);
4045 57 : exec_command_done(i);
4046 57 : free(i);
4047 : }
4048 :
4049 325 : return NULL;
4050 : }
4051 :
4052 46 : void exec_command_free_array(ExecCommand **c, size_t n) {
4053 : size_t i;
4054 :
4055 368 : for (i = 0; i < n; i++)
4056 322 : c[i] = exec_command_free_list(c[i]);
4057 46 : }
4058 :
4059 0 : void exec_command_reset_status_array(ExecCommand *c, size_t n) {
4060 : size_t i;
4061 :
4062 0 : for (i = 0; i < n; i++)
4063 0 : exec_status_reset(&c[i].exec_status);
4064 0 : }
4065 :
4066 6 : void exec_command_reset_status_list_array(ExecCommand **c, size_t n) {
4067 : size_t i;
4068 :
4069 48 : for (i = 0; i < n; i++) {
4070 : ExecCommand *z;
4071 :
4072 48 : LIST_FOREACH(command, z, c[i])
4073 6 : exec_status_reset(&z->exec_status);
4074 : }
4075 6 : }
4076 :
4077 : typedef struct InvalidEnvInfo {
4078 : const Unit *unit;
4079 : const char *path;
4080 : } InvalidEnvInfo;
4081 :
4082 0 : static void invalid_env(const char *p, void *userdata) {
4083 0 : InvalidEnvInfo *info = userdata;
4084 :
4085 0 : log_unit_error(info->unit, "Ignoring invalid environment assignment '%s': %s", p, info->path);
4086 0 : }
4087 :
4088 18 : const char* exec_context_fdname(const ExecContext *c, int fd_index) {
4089 18 : assert(c);
4090 :
4091 18 : switch (fd_index) {
4092 :
4093 6 : case STDIN_FILENO:
4094 6 : if (c->std_input != EXEC_INPUT_NAMED_FD)
4095 6 : return NULL;
4096 :
4097 0 : return c->stdio_fdname[STDIN_FILENO] ?: "stdin";
4098 :
4099 6 : case STDOUT_FILENO:
4100 6 : if (c->std_output != EXEC_OUTPUT_NAMED_FD)
4101 6 : return NULL;
4102 :
4103 0 : return c->stdio_fdname[STDOUT_FILENO] ?: "stdout";
4104 :
4105 6 : case STDERR_FILENO:
4106 6 : if (c->std_error != EXEC_OUTPUT_NAMED_FD)
4107 6 : return NULL;
4108 :
4109 0 : return c->stdio_fdname[STDERR_FILENO] ?: "stderr";
4110 :
4111 0 : default:
4112 0 : return NULL;
4113 : }
4114 : }
4115 :
4116 6 : static int exec_context_named_iofds(
4117 : const ExecContext *c,
4118 : const ExecParameters *p,
4119 : int named_iofds[static 3]) {
4120 :
4121 : size_t i, targets;
4122 : const char* stdio_fdname[3];
4123 : size_t n_fds;
4124 :
4125 6 : assert(c);
4126 6 : assert(p);
4127 6 : assert(named_iofds);
4128 :
4129 18 : targets = (c->std_input == EXEC_INPUT_NAMED_FD) +
4130 12 : (c->std_output == EXEC_OUTPUT_NAMED_FD) +
4131 6 : (c->std_error == EXEC_OUTPUT_NAMED_FD);
4132 :
4133 24 : for (i = 0; i < 3; i++)
4134 18 : stdio_fdname[i] = exec_context_fdname(c, i);
4135 :
4136 6 : n_fds = p->n_storage_fds + p->n_socket_fds;
4137 :
4138 6 : for (i = 0; i < n_fds && targets > 0; i++)
4139 0 : if (named_iofds[STDIN_FILENO] < 0 &&
4140 0 : c->std_input == EXEC_INPUT_NAMED_FD &&
4141 0 : stdio_fdname[STDIN_FILENO] &&
4142 0 : streq(p->fd_names[i], stdio_fdname[STDIN_FILENO])) {
4143 :
4144 0 : named_iofds[STDIN_FILENO] = p->fds[i];
4145 0 : targets--;
4146 :
4147 0 : } else if (named_iofds[STDOUT_FILENO] < 0 &&
4148 0 : c->std_output == EXEC_OUTPUT_NAMED_FD &&
4149 0 : stdio_fdname[STDOUT_FILENO] &&
4150 0 : streq(p->fd_names[i], stdio_fdname[STDOUT_FILENO])) {
4151 :
4152 0 : named_iofds[STDOUT_FILENO] = p->fds[i];
4153 0 : targets--;
4154 :
4155 0 : } else if (named_iofds[STDERR_FILENO] < 0 &&
4156 0 : c->std_error == EXEC_OUTPUT_NAMED_FD &&
4157 0 : stdio_fdname[STDERR_FILENO] &&
4158 0 : streq(p->fd_names[i], stdio_fdname[STDERR_FILENO])) {
4159 :
4160 0 : named_iofds[STDERR_FILENO] = p->fds[i];
4161 0 : targets--;
4162 : }
4163 :
4164 6 : return targets == 0 ? 0 : -ENOENT;
4165 : }
4166 :
4167 6 : static int exec_context_load_environment(const Unit *unit, const ExecContext *c, char ***l) {
4168 6 : char **i, **r = NULL;
4169 :
4170 6 : assert(c);
4171 6 : assert(l);
4172 :
4173 6 : STRV_FOREACH(i, c->environment_files) {
4174 : char *fn;
4175 : int k;
4176 : unsigned n;
4177 0 : bool ignore = false;
4178 : char **p;
4179 0 : _cleanup_globfree_ glob_t pglob = {};
4180 :
4181 0 : fn = *i;
4182 :
4183 0 : if (fn[0] == '-') {
4184 0 : ignore = true;
4185 0 : fn++;
4186 : }
4187 :
4188 0 : if (!path_is_absolute(fn)) {
4189 0 : if (ignore)
4190 0 : continue;
4191 :
4192 0 : strv_free(r);
4193 0 : return -EINVAL;
4194 : }
4195 :
4196 : /* Filename supports globbing, take all matching files */
4197 0 : k = safe_glob(fn, 0, &pglob);
4198 0 : if (k < 0) {
4199 0 : if (ignore)
4200 0 : continue;
4201 :
4202 0 : strv_free(r);
4203 0 : return k;
4204 : }
4205 :
4206 : /* When we don't match anything, -ENOENT should be returned */
4207 0 : assert(pglob.gl_pathc > 0);
4208 :
4209 0 : for (n = 0; n < pglob.gl_pathc; n++) {
4210 0 : k = load_env_file(NULL, pglob.gl_pathv[n], &p);
4211 0 : if (k < 0) {
4212 0 : if (ignore)
4213 0 : continue;
4214 :
4215 0 : strv_free(r);
4216 0 : return k;
4217 : }
4218 : /* Log invalid environment variables with filename */
4219 0 : if (p) {
4220 0 : InvalidEnvInfo info = {
4221 : .unit = unit,
4222 0 : .path = pglob.gl_pathv[n]
4223 : };
4224 :
4225 0 : p = strv_env_clean_with_callback(p, invalid_env, &info);
4226 : }
4227 :
4228 0 : if (!r)
4229 0 : r = p;
4230 : else {
4231 : char **m;
4232 :
4233 0 : m = strv_env_merge(2, r, p);
4234 0 : strv_free(r);
4235 0 : strv_free(p);
4236 0 : if (!m)
4237 0 : return -ENOMEM;
4238 :
4239 0 : r = m;
4240 : }
4241 : }
4242 : }
4243 :
4244 6 : *l = r;
4245 :
4246 6 : return 0;
4247 : }
4248 :
4249 0 : static bool tty_may_match_dev_console(const char *tty) {
4250 0 : _cleanup_free_ char *resolved = NULL;
4251 :
4252 0 : if (!tty)
4253 0 : return true;
4254 :
4255 0 : tty = skip_dev_prefix(tty);
4256 :
4257 : /* trivial identity? */
4258 0 : if (streq(tty, "console"))
4259 0 : return true;
4260 :
4261 0 : if (resolve_dev_console(&resolved) < 0)
4262 0 : return true; /* if we could not resolve, assume it may */
4263 :
4264 : /* "tty0" means the active VC, so it may be the same sometimes */
4265 0 : return path_equal(resolved, tty) || (streq(resolved, "tty0") && tty_is_vc(tty));
4266 : }
4267 :
4268 237 : static bool exec_context_may_touch_tty(const ExecContext *ec) {
4269 237 : assert(ec);
4270 :
4271 474 : return ec->tty_reset ||
4272 237 : ec->tty_vhangup ||
4273 474 : ec->tty_vt_disallocate ||
4274 474 : is_terminal_input(ec->std_input) ||
4275 711 : is_terminal_output(ec->std_output) ||
4276 237 : is_terminal_output(ec->std_error);
4277 : }
4278 :
4279 237 : bool exec_context_may_touch_console(const ExecContext *ec) {
4280 :
4281 237 : return exec_context_may_touch_tty(ec) &&
4282 0 : tty_may_match_dev_console(exec_context_tty_path(ec));
4283 : }
4284 :
4285 0 : static void strv_fprintf(FILE *f, char **l) {
4286 : char **g;
4287 :
4288 0 : assert(f);
4289 :
4290 0 : STRV_FOREACH(g, l)
4291 0 : fprintf(f, " %s", *g);
4292 0 : }
4293 :
4294 171 : void exec_context_dump(const ExecContext *c, FILE* f, const char *prefix) {
4295 : ExecDirectoryType dt;
4296 : char **e, **d;
4297 : unsigned i;
4298 : int r;
4299 :
4300 171 : assert(c);
4301 171 : assert(f);
4302 :
4303 171 : prefix = strempty(prefix);
4304 :
4305 342 : fprintf(f,
4306 : "%sUMask: %04o\n"
4307 : "%sWorkingDirectory: %s\n"
4308 : "%sRootDirectory: %s\n"
4309 : "%sNonBlocking: %s\n"
4310 : "%sPrivateTmp: %s\n"
4311 : "%sPrivateDevices: %s\n"
4312 : "%sProtectKernelTunables: %s\n"
4313 : "%sProtectKernelModules: %s\n"
4314 : "%sProtectControlGroups: %s\n"
4315 : "%sPrivateNetwork: %s\n"
4316 : "%sPrivateUsers: %s\n"
4317 : "%sProtectHome: %s\n"
4318 : "%sProtectSystem: %s\n"
4319 : "%sMountAPIVFS: %s\n"
4320 : "%sIgnoreSIGPIPE: %s\n"
4321 : "%sMemoryDenyWriteExecute: %s\n"
4322 : "%sRestrictRealtime: %s\n"
4323 : "%sRestrictSUIDSGID: %s\n"
4324 : "%sKeyringMode: %s\n"
4325 : "%sProtectHostname: %s\n",
4326 : prefix, c->umask,
4327 171 : prefix, c->working_directory ? c->working_directory : "/",
4328 171 : prefix, c->root_directory ? c->root_directory : "/",
4329 171 : prefix, yes_no(c->non_blocking),
4330 171 : prefix, yes_no(c->private_tmp),
4331 171 : prefix, yes_no(c->private_devices),
4332 171 : prefix, yes_no(c->protect_kernel_tunables),
4333 171 : prefix, yes_no(c->protect_kernel_modules),
4334 171 : prefix, yes_no(c->protect_control_groups),
4335 171 : prefix, yes_no(c->private_network),
4336 171 : prefix, yes_no(c->private_users),
4337 : prefix, protect_home_to_string(c->protect_home),
4338 : prefix, protect_system_to_string(c->protect_system),
4339 171 : prefix, yes_no(c->mount_apivfs),
4340 171 : prefix, yes_no(c->ignore_sigpipe),
4341 171 : prefix, yes_no(c->memory_deny_write_execute),
4342 171 : prefix, yes_no(c->restrict_realtime),
4343 171 : prefix, yes_no(c->restrict_suid_sgid),
4344 : prefix, exec_keyring_mode_to_string(c->keyring_mode),
4345 171 : prefix, yes_no(c->protect_hostname));
4346 :
4347 171 : if (c->root_image)
4348 0 : fprintf(f, "%sRootImage: %s\n", prefix, c->root_image);
4349 :
4350 171 : STRV_FOREACH(e, c->environment)
4351 0 : fprintf(f, "%sEnvironment: %s\n", prefix, *e);
4352 :
4353 171 : STRV_FOREACH(e, c->environment_files)
4354 0 : fprintf(f, "%sEnvironmentFile: %s\n", prefix, *e);
4355 :
4356 171 : STRV_FOREACH(e, c->pass_environment)
4357 0 : fprintf(f, "%sPassEnvironment: %s\n", prefix, *e);
4358 :
4359 171 : STRV_FOREACH(e, c->unset_environment)
4360 0 : fprintf(f, "%sUnsetEnvironment: %s\n", prefix, *e);
4361 :
4362 171 : fprintf(f, "%sRuntimeDirectoryPreserve: %s\n", prefix, exec_preserve_mode_to_string(c->runtime_directory_preserve_mode));
4363 :
4364 1026 : for (dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++) {
4365 855 : fprintf(f, "%s%sMode: %04o\n", prefix, exec_directory_type_to_string(dt), c->directories[dt].mode);
4366 :
4367 855 : STRV_FOREACH(d, c->directories[dt].paths)
4368 0 : fprintf(f, "%s%s: %s\n", prefix, exec_directory_type_to_string(dt), *d);
4369 : }
4370 :
4371 171 : if (c->nice_set)
4372 0 : fprintf(f,
4373 : "%sNice: %i\n",
4374 : prefix, c->nice);
4375 :
4376 171 : if (c->oom_score_adjust_set)
4377 0 : fprintf(f,
4378 : "%sOOMScoreAdjust: %i\n",
4379 : prefix, c->oom_score_adjust);
4380 :
4381 2907 : for (i = 0; i < RLIM_NLIMITS; i++)
4382 2736 : if (c->rlimit[i]) {
4383 0 : fprintf(f, "%sLimit%s: " RLIM_FMT "\n",
4384 0 : prefix, rlimit_to_string(i), c->rlimit[i]->rlim_max);
4385 0 : fprintf(f, "%sLimit%sSoft: " RLIM_FMT "\n",
4386 0 : prefix, rlimit_to_string(i), c->rlimit[i]->rlim_cur);
4387 : }
4388 :
4389 171 : if (c->ioprio_set) {
4390 0 : _cleanup_free_ char *class_str = NULL;
4391 :
4392 0 : r = ioprio_class_to_string_alloc(IOPRIO_PRIO_CLASS(c->ioprio), &class_str);
4393 0 : if (r >= 0)
4394 0 : fprintf(f, "%sIOSchedulingClass: %s\n", prefix, class_str);
4395 :
4396 0 : fprintf(f, "%sIOPriority: %lu\n", prefix, IOPRIO_PRIO_DATA(c->ioprio));
4397 : }
4398 :
4399 171 : if (c->cpu_sched_set) {
4400 0 : _cleanup_free_ char *policy_str = NULL;
4401 :
4402 0 : r = sched_policy_to_string_alloc(c->cpu_sched_policy, &policy_str);
4403 0 : if (r >= 0)
4404 0 : fprintf(f, "%sCPUSchedulingPolicy: %s\n", prefix, policy_str);
4405 :
4406 0 : fprintf(f,
4407 : "%sCPUSchedulingPriority: %i\n"
4408 : "%sCPUSchedulingResetOnFork: %s\n",
4409 : prefix, c->cpu_sched_priority,
4410 0 : prefix, yes_no(c->cpu_sched_reset_on_fork));
4411 : }
4412 :
4413 171 : if (c->cpu_set.set) {
4414 0 : _cleanup_free_ char *affinity = NULL;
4415 :
4416 0 : affinity = cpu_set_to_range_string(&c->cpu_set);
4417 0 : fprintf(f, "%sCPUAffinity: %s\n", prefix, affinity);
4418 : }
4419 :
4420 171 : if (mpol_is_valid(numa_policy_get_type(&c->numa_policy))) {
4421 1 : _cleanup_free_ char *nodes = NULL;
4422 :
4423 1 : nodes = cpu_set_to_range_string(&c->numa_policy.nodes);
4424 1 : fprintf(f, "%sNUMAPolicy: %s\n", prefix, mpol_to_string(numa_policy_get_type(&c->numa_policy)));
4425 1 : fprintf(f, "%sNUMAMask: %s\n", prefix, strnull(nodes));
4426 : }
4427 :
4428 171 : if (c->timer_slack_nsec != NSEC_INFINITY)
4429 1 : fprintf(f, "%sTimerSlackNSec: "NSEC_FMT "\n", prefix, c->timer_slack_nsec);
4430 :
4431 171 : fprintf(f,
4432 : "%sStandardInput: %s\n"
4433 : "%sStandardOutput: %s\n"
4434 : "%sStandardError: %s\n",
4435 : prefix, exec_input_to_string(c->std_input),
4436 : prefix, exec_output_to_string(c->std_output),
4437 : prefix, exec_output_to_string(c->std_error));
4438 :
4439 171 : if (c->std_input == EXEC_INPUT_NAMED_FD)
4440 0 : fprintf(f, "%sStandardInputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDIN_FILENO]);
4441 171 : if (c->std_output == EXEC_OUTPUT_NAMED_FD)
4442 0 : fprintf(f, "%sStandardOutputFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDOUT_FILENO]);
4443 171 : if (c->std_error == EXEC_OUTPUT_NAMED_FD)
4444 0 : fprintf(f, "%sStandardErrorFileDescriptorName: %s\n", prefix, c->stdio_fdname[STDERR_FILENO]);
4445 :
4446 171 : if (c->std_input == EXEC_INPUT_FILE)
4447 0 : fprintf(f, "%sStandardInputFile: %s\n", prefix, c->stdio_file[STDIN_FILENO]);
4448 171 : if (c->std_output == EXEC_OUTPUT_FILE)
4449 0 : fprintf(f, "%sStandardOutputFile: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4450 171 : if (c->std_output == EXEC_OUTPUT_FILE_APPEND)
4451 0 : fprintf(f, "%sStandardOutputFileToAppend: %s\n", prefix, c->stdio_file[STDOUT_FILENO]);
4452 171 : if (c->std_error == EXEC_OUTPUT_FILE)
4453 0 : fprintf(f, "%sStandardErrorFile: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4454 171 : if (c->std_error == EXEC_OUTPUT_FILE_APPEND)
4455 0 : fprintf(f, "%sStandardErrorFileToAppend: %s\n", prefix, c->stdio_file[STDERR_FILENO]);
4456 :
4457 171 : if (c->tty_path)
4458 0 : fprintf(f,
4459 : "%sTTYPath: %s\n"
4460 : "%sTTYReset: %s\n"
4461 : "%sTTYVHangup: %s\n"
4462 : "%sTTYVTDisallocate: %s\n",
4463 : prefix, c->tty_path,
4464 0 : prefix, yes_no(c->tty_reset),
4465 0 : prefix, yes_no(c->tty_vhangup),
4466 0 : prefix, yes_no(c->tty_vt_disallocate));
4467 :
4468 171 : if (IN_SET(c->std_output,
4469 : EXEC_OUTPUT_SYSLOG,
4470 : EXEC_OUTPUT_KMSG,
4471 : EXEC_OUTPUT_JOURNAL,
4472 : EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4473 : EXEC_OUTPUT_KMSG_AND_CONSOLE,
4474 171 : EXEC_OUTPUT_JOURNAL_AND_CONSOLE) ||
4475 171 : IN_SET(c->std_error,
4476 : EXEC_OUTPUT_SYSLOG,
4477 : EXEC_OUTPUT_KMSG,
4478 : EXEC_OUTPUT_JOURNAL,
4479 : EXEC_OUTPUT_SYSLOG_AND_CONSOLE,
4480 : EXEC_OUTPUT_KMSG_AND_CONSOLE,
4481 : EXEC_OUTPUT_JOURNAL_AND_CONSOLE)) {
4482 :
4483 0 : _cleanup_free_ char *fac_str = NULL, *lvl_str = NULL;
4484 :
4485 0 : r = log_facility_unshifted_to_string_alloc(c->syslog_priority >> 3, &fac_str);
4486 0 : if (r >= 0)
4487 0 : fprintf(f, "%sSyslogFacility: %s\n", prefix, fac_str);
4488 :
4489 0 : r = log_level_to_string_alloc(LOG_PRI(c->syslog_priority), &lvl_str);
4490 0 : if (r >= 0)
4491 0 : fprintf(f, "%sSyslogLevel: %s\n", prefix, lvl_str);
4492 : }
4493 :
4494 171 : if (c->log_level_max >= 0) {
4495 1 : _cleanup_free_ char *t = NULL;
4496 :
4497 1 : (void) log_level_to_string_alloc(c->log_level_max, &t);
4498 :
4499 1 : fprintf(f, "%sLogLevelMax: %s\n", prefix, strna(t));
4500 : }
4501 :
4502 171 : if (c->log_rate_limit_interval_usec > 0) {
4503 : char buf_timespan[FORMAT_TIMESPAN_MAX];
4504 :
4505 0 : fprintf(f,
4506 : "%sLogRateLimitIntervalSec: %s\n",
4507 : prefix, format_timespan(buf_timespan, sizeof(buf_timespan), c->log_rate_limit_interval_usec, USEC_PER_SEC));
4508 : }
4509 :
4510 171 : if (c->log_rate_limit_burst > 0)
4511 0 : fprintf(f, "%sLogRateLimitBurst: %u\n", prefix, c->log_rate_limit_burst);
4512 :
4513 171 : if (c->n_log_extra_fields > 0) {
4514 : size_t j;
4515 :
4516 5 : for (j = 0; j < c->n_log_extra_fields; j++) {
4517 4 : fprintf(f, "%sLogExtraFields: ", prefix);
4518 4 : fwrite(c->log_extra_fields[j].iov_base,
4519 4 : 1, c->log_extra_fields[j].iov_len,
4520 : f);
4521 4 : fputc('\n', f);
4522 : }
4523 : }
4524 :
4525 171 : if (c->secure_bits) {
4526 0 : _cleanup_free_ char *str = NULL;
4527 :
4528 0 : r = secure_bits_to_string_alloc(c->secure_bits, &str);
4529 0 : if (r >= 0)
4530 0 : fprintf(f, "%sSecure Bits: %s\n", prefix, str);
4531 : }
4532 :
4533 171 : if (c->capability_bounding_set != CAP_ALL) {
4534 1 : _cleanup_free_ char *str = NULL;
4535 :
4536 1 : r = capability_set_to_string_alloc(c->capability_bounding_set, &str);
4537 1 : if (r >= 0)
4538 1 : fprintf(f, "%sCapabilityBoundingSet: %s\n", prefix, str);
4539 : }
4540 :
4541 171 : if (c->capability_ambient_set != 0) {
4542 0 : _cleanup_free_ char *str = NULL;
4543 :
4544 0 : r = capability_set_to_string_alloc(c->capability_ambient_set, &str);
4545 0 : if (r >= 0)
4546 0 : fprintf(f, "%sAmbientCapabilities: %s\n", prefix, str);
4547 : }
4548 :
4549 171 : if (c->user)
4550 0 : fprintf(f, "%sUser: %s\n", prefix, c->user);
4551 171 : if (c->group)
4552 0 : fprintf(f, "%sGroup: %s\n", prefix, c->group);
4553 :
4554 171 : fprintf(f, "%sDynamicUser: %s\n", prefix, yes_no(c->dynamic_user));
4555 :
4556 171 : if (!strv_isempty(c->supplementary_groups)) {
4557 0 : fprintf(f, "%sSupplementaryGroups:", prefix);
4558 0 : strv_fprintf(f, c->supplementary_groups);
4559 0 : fputs("\n", f);
4560 : }
4561 :
4562 171 : if (c->pam_name)
4563 0 : fprintf(f, "%sPAMName: %s\n", prefix, c->pam_name);
4564 :
4565 171 : if (!strv_isempty(c->read_write_paths)) {
4566 0 : fprintf(f, "%sReadWritePaths:", prefix);
4567 0 : strv_fprintf(f, c->read_write_paths);
4568 0 : fputs("\n", f);
4569 : }
4570 :
4571 171 : if (!strv_isempty(c->read_only_paths)) {
4572 0 : fprintf(f, "%sReadOnlyPaths:", prefix);
4573 0 : strv_fprintf(f, c->read_only_paths);
4574 0 : fputs("\n", f);
4575 : }
4576 :
4577 171 : if (!strv_isempty(c->inaccessible_paths)) {
4578 0 : fprintf(f, "%sInaccessiblePaths:", prefix);
4579 0 : strv_fprintf(f, c->inaccessible_paths);
4580 0 : fputs("\n", f);
4581 : }
4582 :
4583 171 : if (c->n_bind_mounts > 0)
4584 0 : for (i = 0; i < c->n_bind_mounts; i++)
4585 0 : fprintf(f, "%s%s: %s%s:%s:%s\n", prefix,
4586 0 : c->bind_mounts[i].read_only ? "BindReadOnlyPaths" : "BindPaths",
4587 0 : c->bind_mounts[i].ignore_enoent ? "-": "",
4588 0 : c->bind_mounts[i].source,
4589 0 : c->bind_mounts[i].destination,
4590 0 : c->bind_mounts[i].recursive ? "rbind" : "norbind");
4591 :
4592 171 : if (c->n_temporary_filesystems > 0)
4593 0 : for (i = 0; i < c->n_temporary_filesystems; i++) {
4594 0 : TemporaryFileSystem *t = c->temporary_filesystems + i;
4595 :
4596 0 : fprintf(f, "%sTemporaryFileSystem: %s%s%s\n", prefix,
4597 : t->path,
4598 0 : isempty(t->options) ? "" : ":",
4599 0 : strempty(t->options));
4600 : }
4601 :
4602 171 : if (c->utmp_id)
4603 0 : fprintf(f,
4604 : "%sUtmpIdentifier: %s\n",
4605 : prefix, c->utmp_id);
4606 :
4607 171 : if (c->selinux_context)
4608 0 : fprintf(f,
4609 : "%sSELinuxContext: %s%s\n",
4610 0 : prefix, c->selinux_context_ignore ? "-" : "", c->selinux_context);
4611 :
4612 171 : if (c->apparmor_profile)
4613 0 : fprintf(f,
4614 : "%sAppArmorProfile: %s%s\n",
4615 0 : prefix, c->apparmor_profile_ignore ? "-" : "", c->apparmor_profile);
4616 :
4617 171 : if (c->smack_process_label)
4618 0 : fprintf(f,
4619 : "%sSmackProcessLabel: %s%s\n",
4620 0 : prefix, c->smack_process_label_ignore ? "-" : "", c->smack_process_label);
4621 :
4622 171 : if (c->personality != PERSONALITY_INVALID)
4623 1 : fprintf(f,
4624 : "%sPersonality: %s\n",
4625 : prefix, strna(personality_to_string(c->personality)));
4626 :
4627 171 : fprintf(f,
4628 : "%sLockPersonality: %s\n",
4629 171 : prefix, yes_no(c->lock_personality));
4630 :
4631 171 : if (c->syscall_filter) {
4632 : #if HAVE_SECCOMP
4633 : Iterator j;
4634 : void *id, *val;
4635 0 : bool first = true;
4636 : #endif
4637 :
4638 0 : fprintf(f,
4639 : "%sSystemCallFilter: ",
4640 : prefix);
4641 :
4642 0 : if (!c->syscall_whitelist)
4643 0 : fputc('~', f);
4644 :
4645 : #if HAVE_SECCOMP
4646 0 : HASHMAP_FOREACH_KEY(val, id, c->syscall_filter, j) {
4647 0 : _cleanup_free_ char *name = NULL;
4648 0 : const char *errno_name = NULL;
4649 0 : int num = PTR_TO_INT(val);
4650 :
4651 0 : if (first)
4652 0 : first = false;
4653 : else
4654 0 : fputc(' ', f);
4655 :
4656 0 : name = seccomp_syscall_resolve_num_arch(SCMP_ARCH_NATIVE, PTR_TO_INT(id) - 1);
4657 0 : fputs(strna(name), f);
4658 :
4659 0 : if (num >= 0) {
4660 0 : errno_name = errno_to_name(num);
4661 0 : if (errno_name)
4662 0 : fprintf(f, ":%s", errno_name);
4663 : else
4664 0 : fprintf(f, ":%d", num);
4665 : }
4666 : }
4667 : #endif
4668 :
4669 0 : fputc('\n', f);
4670 : }
4671 :
4672 171 : if (c->syscall_archs) {
4673 : #if HAVE_SECCOMP
4674 : Iterator j;
4675 : void *id;
4676 : #endif
4677 :
4678 0 : fprintf(f,
4679 : "%sSystemCallArchitectures:",
4680 : prefix);
4681 :
4682 : #if HAVE_SECCOMP
4683 0 : SET_FOREACH(id, c->syscall_archs, j)
4684 0 : fprintf(f, " %s", strna(seccomp_arch_to_string(PTR_TO_UINT32(id) - 1)));
4685 : #endif
4686 0 : fputc('\n', f);
4687 : }
4688 :
4689 171 : if (exec_context_restrict_namespaces_set(c)) {
4690 1 : _cleanup_free_ char *s = NULL;
4691 :
4692 1 : r = namespace_flags_to_string(c->restrict_namespaces, &s);
4693 1 : if (r >= 0)
4694 1 : fprintf(f, "%sRestrictNamespaces: %s\n",
4695 : prefix, s);
4696 : }
4697 :
4698 171 : if (c->network_namespace_path)
4699 0 : fprintf(f,
4700 : "%sNetworkNamespacePath: %s\n",
4701 : prefix, c->network_namespace_path);
4702 :
4703 171 : if (c->syscall_errno > 0) {
4704 : const char *errno_name;
4705 :
4706 0 : fprintf(f, "%sSystemCallErrorNumber: ", prefix);
4707 :
4708 0 : errno_name = errno_to_name(c->syscall_errno);
4709 0 : if (errno_name)
4710 0 : fprintf(f, "%s\n", errno_name);
4711 : else
4712 0 : fprintf(f, "%d\n", c->syscall_errno);
4713 : }
4714 171 : }
4715 :
4716 0 : bool exec_context_maintains_privileges(const ExecContext *c) {
4717 0 : assert(c);
4718 :
4719 : /* Returns true if the process forked off would run under
4720 : * an unchanged UID or as root. */
4721 :
4722 0 : if (!c->user)
4723 0 : return true;
4724 :
4725 0 : if (streq(c->user, "root") || streq(c->user, "0"))
4726 0 : return true;
4727 :
4728 0 : return false;
4729 : }
4730 :
4731 0 : int exec_context_get_effective_ioprio(const ExecContext *c) {
4732 : int p;
4733 :
4734 0 : assert(c);
4735 :
4736 0 : if (c->ioprio_set)
4737 0 : return c->ioprio;
4738 :
4739 0 : p = ioprio_get(IOPRIO_WHO_PROCESS, 0);
4740 0 : if (p < 0)
4741 0 : return IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 4);
4742 :
4743 0 : return p;
4744 : }
4745 :
4746 561 : void exec_context_free_log_extra_fields(ExecContext *c) {
4747 : size_t l;
4748 :
4749 561 : assert(c);
4750 :
4751 565 : for (l = 0; l < c->n_log_extra_fields; l++)
4752 4 : free(c->log_extra_fields[l].iov_base);
4753 561 : c->log_extra_fields = mfree(c->log_extra_fields);
4754 561 : c->n_log_extra_fields = 0;
4755 561 : }
4756 :
4757 0 : void exec_context_revert_tty(ExecContext *c) {
4758 : int r;
4759 :
4760 0 : assert(c);
4761 :
4762 : /* First, reset the TTY (possibly kicking everybody else from the TTY) */
4763 0 : exec_context_tty_reset(c, NULL);
4764 :
4765 : /* And then undo what chown_terminal() did earlier. Note that we only do this if we have a path
4766 : * configured. If the TTY was passed to us as file descriptor we assume the TTY is opened and managed
4767 : * by whoever passed it to us and thus knows better when and how to chmod()/chown() it back. */
4768 :
4769 0 : if (exec_context_may_touch_tty(c)) {
4770 : const char *path;
4771 :
4772 0 : path = exec_context_tty_path(c);
4773 0 : if (path) {
4774 0 : r = chmod_and_chown(path, TTY_MODE, 0, TTY_GID);
4775 0 : if (r < 0 && r != -ENOENT)
4776 0 : log_warning_errno(r, "Failed to reset TTY ownership/access mode of %s, ignoring: %m", path);
4777 : }
4778 : }
4779 0 : }
4780 :
4781 0 : int exec_context_get_clean_directories(
4782 : ExecContext *c,
4783 : char **prefix,
4784 : ExecCleanMask mask,
4785 : char ***ret) {
4786 :
4787 0 : _cleanup_strv_free_ char **l = NULL;
4788 : ExecDirectoryType t;
4789 : int r;
4790 :
4791 0 : assert(c);
4792 0 : assert(prefix);
4793 0 : assert(ret);
4794 :
4795 0 : for (t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++) {
4796 : char **i;
4797 :
4798 0 : if (!FLAGS_SET(mask, 1U << t))
4799 0 : continue;
4800 :
4801 0 : if (!prefix[t])
4802 0 : continue;
4803 :
4804 0 : STRV_FOREACH(i, c->directories[t].paths) {
4805 : char *j;
4806 :
4807 0 : j = path_join(prefix[t], *i);
4808 0 : if (!j)
4809 0 : return -ENOMEM;
4810 :
4811 0 : r = strv_consume(&l, j);
4812 0 : if (r < 0)
4813 0 : return r;
4814 : }
4815 : }
4816 :
4817 0 : *ret = TAKE_PTR(l);
4818 0 : return 0;
4819 : }
4820 :
4821 0 : int exec_context_get_clean_mask(ExecContext *c, ExecCleanMask *ret) {
4822 0 : ExecCleanMask mask = 0;
4823 :
4824 0 : assert(c);
4825 0 : assert(ret);
4826 :
4827 0 : for (ExecDirectoryType t = 0; t < _EXEC_DIRECTORY_TYPE_MAX; t++)
4828 0 : if (!strv_isempty(c->directories[t].paths))
4829 0 : mask |= 1U << t;
4830 :
4831 0 : *ret = mask;
4832 0 : return 0;
4833 : }
4834 :
4835 12 : void exec_status_start(ExecStatus *s, pid_t pid) {
4836 12 : assert(s);
4837 :
4838 12 : *s = (ExecStatus) {
4839 : .pid = pid,
4840 : };
4841 :
4842 12 : dual_timestamp_get(&s->start_timestamp);
4843 12 : }
4844 :
4845 0 : void exec_status_exit(ExecStatus *s, const ExecContext *context, pid_t pid, int code, int status) {
4846 0 : assert(s);
4847 :
4848 0 : if (s->pid != pid) {
4849 0 : *s = (ExecStatus) {
4850 : .pid = pid,
4851 : };
4852 : }
4853 :
4854 0 : dual_timestamp_get(&s->exit_timestamp);
4855 :
4856 0 : s->code = code;
4857 0 : s->status = status;
4858 :
4859 0 : if (context && context->utmp_id)
4860 0 : (void) utmp_put_dead_process(context->utmp_id, pid, code, status);
4861 0 : }
4862 :
4863 12 : void exec_status_reset(ExecStatus *s) {
4864 12 : assert(s);
4865 :
4866 12 : *s = (ExecStatus) {};
4867 12 : }
4868 :
4869 44 : void exec_status_dump(const ExecStatus *s, FILE *f, const char *prefix) {
4870 : char buf[FORMAT_TIMESTAMP_MAX];
4871 :
4872 44 : assert(s);
4873 44 : assert(f);
4874 :
4875 44 : if (s->pid <= 0)
4876 44 : return;
4877 :
4878 0 : prefix = strempty(prefix);
4879 :
4880 0 : fprintf(f,
4881 : "%sPID: "PID_FMT"\n",
4882 : prefix, s->pid);
4883 :
4884 0 : if (dual_timestamp_is_set(&s->start_timestamp))
4885 0 : fprintf(f,
4886 : "%sStart Timestamp: %s\n",
4887 : prefix, format_timestamp(buf, sizeof(buf), s->start_timestamp.realtime));
4888 :
4889 0 : if (dual_timestamp_is_set(&s->exit_timestamp))
4890 0 : fprintf(f,
4891 : "%sExit Timestamp: %s\n"
4892 : "%sExit Code: %s\n"
4893 : "%sExit Status: %i\n",
4894 : prefix, format_timestamp(buf, sizeof(buf), s->exit_timestamp.realtime),
4895 : prefix, sigchld_code_to_string(s->code),
4896 : prefix, s->status);
4897 : }
4898 :
4899 50 : static char *exec_command_line(char **argv) {
4900 : size_t k;
4901 : char *n, *p, **a;
4902 50 : bool first = true;
4903 :
4904 50 : assert(argv);
4905 :
4906 50 : k = 1;
4907 100 : STRV_FOREACH(a, argv)
4908 50 : k += strlen(*a)+3;
4909 :
4910 50 : n = new(char, k);
4911 50 : if (!n)
4912 0 : return NULL;
4913 :
4914 50 : p = n;
4915 100 : STRV_FOREACH(a, argv) {
4916 :
4917 50 : if (!first)
4918 0 : *(p++) = ' ';
4919 : else
4920 50 : first = false;
4921 :
4922 50 : if (strpbrk(*a, WHITESPACE)) {
4923 0 : *(p++) = '\'';
4924 0 : p = stpcpy(p, *a);
4925 0 : *(p++) = '\'';
4926 : } else
4927 50 : p = stpcpy(p, *a);
4928 :
4929 : }
4930 :
4931 50 : *p = 0;
4932 :
4933 : /* FIXME: this doesn't really handle arguments that have
4934 : * spaces and ticks in them */
4935 :
4936 50 : return n;
4937 : }
4938 :
4939 44 : static void exec_command_dump(ExecCommand *c, FILE *f, const char *prefix) {
4940 44 : _cleanup_free_ char *cmd = NULL;
4941 : const char *prefix2;
4942 :
4943 44 : assert(c);
4944 44 : assert(f);
4945 :
4946 44 : prefix = strempty(prefix);
4947 220 : prefix2 = strjoina(prefix, "\t");
4948 :
4949 44 : cmd = exec_command_line(c->argv);
4950 44 : fprintf(f,
4951 : "%sCommand Line: %s\n",
4952 44 : prefix, cmd ? cmd : strerror_safe(ENOMEM));
4953 :
4954 44 : exec_status_dump(&c->exec_status, f, prefix2);
4955 44 : }
4956 :
4957 44 : void exec_command_dump_list(ExecCommand *c, FILE *f, const char *prefix) {
4958 44 : assert(f);
4959 :
4960 44 : prefix = strempty(prefix);
4961 :
4962 88 : LIST_FOREACH(command, c, c)
4963 44 : exec_command_dump(c, f, prefix);
4964 44 : }
4965 :
4966 57 : void exec_command_append_list(ExecCommand **l, ExecCommand *e) {
4967 : ExecCommand *end;
4968 :
4969 57 : assert(l);
4970 57 : assert(e);
4971 :
4972 57 : if (*l) {
4973 : /* It's kind of important, that we keep the order here */
4974 213 : LIST_FIND_TAIL(command, *l, end);
4975 22 : LIST_INSERT_AFTER(command, *l, end, e);
4976 : } else
4977 35 : *l = e;
4978 57 : }
4979 :
4980 0 : int exec_command_set(ExecCommand *c, const char *path, ...) {
4981 : va_list ap;
4982 : char **l, *p;
4983 :
4984 0 : assert(c);
4985 0 : assert(path);
4986 :
4987 0 : va_start(ap, path);
4988 0 : l = strv_new_ap(path, ap);
4989 0 : va_end(ap);
4990 :
4991 0 : if (!l)
4992 0 : return -ENOMEM;
4993 :
4994 0 : p = strdup(path);
4995 0 : if (!p) {
4996 0 : strv_free(l);
4997 0 : return -ENOMEM;
4998 : }
4999 :
5000 0 : free_and_replace(c->path, p);
5001 :
5002 0 : return strv_free_and_replace(c->argv, l);
5003 : }
5004 :
5005 0 : int exec_command_append(ExecCommand *c, const char *path, ...) {
5006 0 : _cleanup_strv_free_ char **l = NULL;
5007 : va_list ap;
5008 : int r;
5009 :
5010 0 : assert(c);
5011 0 : assert(path);
5012 :
5013 0 : va_start(ap, path);
5014 0 : l = strv_new_ap(path, ap);
5015 0 : va_end(ap);
5016 :
5017 0 : if (!l)
5018 0 : return -ENOMEM;
5019 :
5020 0 : r = strv_extend_strv(&c->argv, l, false);
5021 0 : if (r < 0)
5022 0 : return r;
5023 :
5024 0 : return 0;
5025 : }
5026 :
5027 0 : static void *remove_tmpdir_thread(void *p) {
5028 0 : _cleanup_free_ char *path = p;
5029 :
5030 0 : (void) rm_rf(path, REMOVE_ROOT|REMOVE_PHYSICAL);
5031 0 : return NULL;
5032 : }
5033 :
5034 0 : static ExecRuntime* exec_runtime_free(ExecRuntime *rt, bool destroy) {
5035 : int r;
5036 :
5037 0 : if (!rt)
5038 0 : return NULL;
5039 :
5040 0 : if (rt->manager)
5041 0 : (void) hashmap_remove(rt->manager->exec_runtime_by_id, rt->id);
5042 :
5043 : /* When destroy is true, then rm_rf tmp_dir and var_tmp_dir. */
5044 0 : if (destroy && rt->tmp_dir) {
5045 0 : log_debug("Spawning thread to nuke %s", rt->tmp_dir);
5046 :
5047 0 : r = asynchronous_job(remove_tmpdir_thread, rt->tmp_dir);
5048 0 : if (r < 0) {
5049 0 : log_warning_errno(r, "Failed to nuke %s: %m", rt->tmp_dir);
5050 0 : free(rt->tmp_dir);
5051 : }
5052 :
5053 0 : rt->tmp_dir = NULL;
5054 : }
5055 :
5056 0 : if (destroy && rt->var_tmp_dir) {
5057 0 : log_debug("Spawning thread to nuke %s", rt->var_tmp_dir);
5058 :
5059 0 : r = asynchronous_job(remove_tmpdir_thread, rt->var_tmp_dir);
5060 0 : if (r < 0) {
5061 0 : log_warning_errno(r, "Failed to nuke %s: %m", rt->var_tmp_dir);
5062 0 : free(rt->var_tmp_dir);
5063 : }
5064 :
5065 0 : rt->var_tmp_dir = NULL;
5066 : }
5067 :
5068 0 : rt->id = mfree(rt->id);
5069 0 : rt->tmp_dir = mfree(rt->tmp_dir);
5070 0 : rt->var_tmp_dir = mfree(rt->var_tmp_dir);
5071 0 : safe_close_pair(rt->netns_storage_socket);
5072 0 : return mfree(rt);
5073 : }
5074 :
5075 0 : static void exec_runtime_freep(ExecRuntime **rt) {
5076 0 : (void) exec_runtime_free(*rt, false);
5077 0 : }
5078 :
5079 0 : static int exec_runtime_allocate(ExecRuntime **ret) {
5080 : ExecRuntime *n;
5081 :
5082 0 : assert(ret);
5083 :
5084 0 : n = new(ExecRuntime, 1);
5085 0 : if (!n)
5086 0 : return -ENOMEM;
5087 :
5088 0 : *n = (ExecRuntime) {
5089 : .netns_storage_socket = { -1, -1 },
5090 : };
5091 :
5092 0 : *ret = n;
5093 0 : return 0;
5094 : }
5095 :
5096 0 : static int exec_runtime_add(
5097 : Manager *m,
5098 : const char *id,
5099 : const char *tmp_dir,
5100 : const char *var_tmp_dir,
5101 : const int netns_storage_socket[2],
5102 : ExecRuntime **ret) {
5103 :
5104 0 : _cleanup_(exec_runtime_freep) ExecRuntime *rt = NULL;
5105 : int r;
5106 :
5107 0 : assert(m);
5108 0 : assert(id);
5109 :
5110 0 : r = hashmap_ensure_allocated(&m->exec_runtime_by_id, &string_hash_ops);
5111 0 : if (r < 0)
5112 0 : return r;
5113 :
5114 0 : r = exec_runtime_allocate(&rt);
5115 0 : if (r < 0)
5116 0 : return r;
5117 :
5118 0 : rt->id = strdup(id);
5119 0 : if (!rt->id)
5120 0 : return -ENOMEM;
5121 :
5122 0 : if (tmp_dir) {
5123 0 : rt->tmp_dir = strdup(tmp_dir);
5124 0 : if (!rt->tmp_dir)
5125 0 : return -ENOMEM;
5126 :
5127 : /* When tmp_dir is set, then we require var_tmp_dir is also set. */
5128 0 : assert(var_tmp_dir);
5129 0 : rt->var_tmp_dir = strdup(var_tmp_dir);
5130 0 : if (!rt->var_tmp_dir)
5131 0 : return -ENOMEM;
5132 : }
5133 :
5134 0 : if (netns_storage_socket) {
5135 0 : rt->netns_storage_socket[0] = netns_storage_socket[0];
5136 0 : rt->netns_storage_socket[1] = netns_storage_socket[1];
5137 : }
5138 :
5139 0 : r = hashmap_put(m->exec_runtime_by_id, rt->id, rt);
5140 0 : if (r < 0)
5141 0 : return r;
5142 :
5143 0 : rt->manager = m;
5144 :
5145 0 : if (ret)
5146 0 : *ret = rt;
5147 :
5148 : /* do not remove created ExecRuntime object when the operation succeeds. */
5149 0 : rt = NULL;
5150 0 : return 0;
5151 : }
5152 :
5153 237 : static int exec_runtime_make(Manager *m, const ExecContext *c, const char *id, ExecRuntime **ret) {
5154 237 : _cleanup_free_ char *tmp_dir = NULL, *var_tmp_dir = NULL;
5155 237 : _cleanup_close_pair_ int netns_storage_socket[2] = { -1, -1 };
5156 : int r;
5157 :
5158 237 : assert(m);
5159 237 : assert(c);
5160 237 : assert(id);
5161 :
5162 : /* It is not necessary to create ExecRuntime object. */
5163 237 : if (!c->private_network && !c->private_tmp && !c->network_namespace_path)
5164 237 : return 0;
5165 :
5166 0 : if (c->private_tmp) {
5167 0 : r = setup_tmp_dirs(id, &tmp_dir, &var_tmp_dir);
5168 0 : if (r < 0)
5169 0 : return r;
5170 : }
5171 :
5172 0 : if (c->private_network || c->network_namespace_path) {
5173 0 : if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, netns_storage_socket) < 0)
5174 0 : return -errno;
5175 : }
5176 :
5177 0 : r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, netns_storage_socket, ret);
5178 0 : if (r < 0)
5179 0 : return r;
5180 :
5181 : /* Avoid cleanup */
5182 0 : netns_storage_socket[0] = netns_storage_socket[1] = -1;
5183 0 : return 1;
5184 : }
5185 :
5186 237 : int exec_runtime_acquire(Manager *m, const ExecContext *c, const char *id, bool create, ExecRuntime **ret) {
5187 : ExecRuntime *rt;
5188 : int r;
5189 :
5190 237 : assert(m);
5191 237 : assert(id);
5192 237 : assert(ret);
5193 :
5194 237 : rt = hashmap_get(m->exec_runtime_by_id, id);
5195 237 : if (rt)
5196 : /* We already have a ExecRuntime object, let's increase the ref count and reuse it */
5197 0 : goto ref;
5198 :
5199 237 : if (!create)
5200 0 : return 0;
5201 :
5202 : /* If not found, then create a new object. */
5203 237 : r = exec_runtime_make(m, c, id, &rt);
5204 237 : if (r <= 0)
5205 : /* When r == 0, it is not necessary to create ExecRuntime object. */
5206 237 : return r;
5207 :
5208 0 : ref:
5209 : /* increment reference counter. */
5210 0 : rt->n_ref++;
5211 0 : *ret = rt;
5212 0 : return 1;
5213 : }
5214 :
5215 559 : ExecRuntime *exec_runtime_unref(ExecRuntime *rt, bool destroy) {
5216 559 : if (!rt)
5217 559 : return NULL;
5218 :
5219 0 : assert(rt->n_ref > 0);
5220 :
5221 0 : rt->n_ref--;
5222 0 : if (rt->n_ref > 0)
5223 0 : return NULL;
5224 :
5225 0 : return exec_runtime_free(rt, destroy);
5226 : }
5227 :
5228 0 : int exec_runtime_serialize(const Manager *m, FILE *f, FDSet *fds) {
5229 : ExecRuntime *rt;
5230 : Iterator i;
5231 :
5232 0 : assert(m);
5233 0 : assert(f);
5234 0 : assert(fds);
5235 :
5236 0 : HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5237 0 : fprintf(f, "exec-runtime=%s", rt->id);
5238 :
5239 0 : if (rt->tmp_dir)
5240 0 : fprintf(f, " tmp-dir=%s", rt->tmp_dir);
5241 :
5242 0 : if (rt->var_tmp_dir)
5243 0 : fprintf(f, " var-tmp-dir=%s", rt->var_tmp_dir);
5244 :
5245 0 : if (rt->netns_storage_socket[0] >= 0) {
5246 : int copy;
5247 :
5248 0 : copy = fdset_put_dup(fds, rt->netns_storage_socket[0]);
5249 0 : if (copy < 0)
5250 0 : return copy;
5251 :
5252 0 : fprintf(f, " netns-socket-0=%i", copy);
5253 : }
5254 :
5255 0 : if (rt->netns_storage_socket[1] >= 0) {
5256 : int copy;
5257 :
5258 0 : copy = fdset_put_dup(fds, rt->netns_storage_socket[1]);
5259 0 : if (copy < 0)
5260 0 : return copy;
5261 :
5262 0 : fprintf(f, " netns-socket-1=%i", copy);
5263 : }
5264 :
5265 0 : fputc('\n', f);
5266 : }
5267 :
5268 0 : return 0;
5269 : }
5270 :
5271 0 : int exec_runtime_deserialize_compat(Unit *u, const char *key, const char *value, FDSet *fds) {
5272 0 : _cleanup_(exec_runtime_freep) ExecRuntime *rt_create = NULL;
5273 : ExecRuntime *rt;
5274 : int r;
5275 :
5276 : /* This is for the migration from old (v237 or earlier) deserialization text.
5277 : * Due to the bug #7790, this may not work with the units that use JoinsNamespaceOf=.
5278 : * Even if the ExecRuntime object originally created by the other unit, we cannot judge
5279 : * so or not from the serialized text, then we always creates a new object owned by this. */
5280 :
5281 0 : assert(u);
5282 0 : assert(key);
5283 0 : assert(value);
5284 :
5285 : /* Manager manages ExecRuntime objects by the unit id.
5286 : * So, we omit the serialized text when the unit does not have id (yet?)... */
5287 0 : if (isempty(u->id)) {
5288 0 : log_unit_debug(u, "Invocation ID not found. Dropping runtime parameter.");
5289 0 : return 0;
5290 : }
5291 :
5292 0 : r = hashmap_ensure_allocated(&u->manager->exec_runtime_by_id, &string_hash_ops);
5293 0 : if (r < 0) {
5294 0 : log_unit_debug_errno(u, r, "Failed to allocate storage for runtime parameter: %m");
5295 0 : return 0;
5296 : }
5297 :
5298 0 : rt = hashmap_get(u->manager->exec_runtime_by_id, u->id);
5299 0 : if (!rt) {
5300 0 : r = exec_runtime_allocate(&rt_create);
5301 0 : if (r < 0)
5302 0 : return log_oom();
5303 :
5304 0 : rt_create->id = strdup(u->id);
5305 0 : if (!rt_create->id)
5306 0 : return log_oom();
5307 :
5308 0 : rt = rt_create;
5309 : }
5310 :
5311 0 : if (streq(key, "tmp-dir")) {
5312 : char *copy;
5313 :
5314 0 : copy = strdup(value);
5315 0 : if (!copy)
5316 0 : return log_oom();
5317 :
5318 0 : free_and_replace(rt->tmp_dir, copy);
5319 :
5320 0 : } else if (streq(key, "var-tmp-dir")) {
5321 : char *copy;
5322 :
5323 0 : copy = strdup(value);
5324 0 : if (!copy)
5325 0 : return log_oom();
5326 :
5327 0 : free_and_replace(rt->var_tmp_dir, copy);
5328 :
5329 0 : } else if (streq(key, "netns-socket-0")) {
5330 : int fd;
5331 :
5332 0 : if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5333 0 : log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5334 0 : return 0;
5335 : }
5336 :
5337 0 : safe_close(rt->netns_storage_socket[0]);
5338 0 : rt->netns_storage_socket[0] = fdset_remove(fds, fd);
5339 :
5340 0 : } else if (streq(key, "netns-socket-1")) {
5341 : int fd;
5342 :
5343 0 : if (safe_atoi(value, &fd) < 0 || !fdset_contains(fds, fd)) {
5344 0 : log_unit_debug(u, "Failed to parse netns socket value: %s", value);
5345 0 : return 0;
5346 : }
5347 :
5348 0 : safe_close(rt->netns_storage_socket[1]);
5349 0 : rt->netns_storage_socket[1] = fdset_remove(fds, fd);
5350 : } else
5351 0 : return 0;
5352 :
5353 : /* If the object is newly created, then put it to the hashmap which manages ExecRuntime objects. */
5354 0 : if (rt_create) {
5355 0 : r = hashmap_put(u->manager->exec_runtime_by_id, rt_create->id, rt_create);
5356 0 : if (r < 0) {
5357 0 : log_unit_debug_errno(u, r, "Failed to put runtime parameter to manager's storage: %m");
5358 0 : return 0;
5359 : }
5360 :
5361 0 : rt_create->manager = u->manager;
5362 :
5363 : /* Avoid cleanup */
5364 0 : rt_create = NULL;
5365 : }
5366 :
5367 0 : return 1;
5368 : }
5369 :
5370 0 : void exec_runtime_deserialize_one(Manager *m, const char *value, FDSet *fds) {
5371 0 : char *id = NULL, *tmp_dir = NULL, *var_tmp_dir = NULL;
5372 0 : int r, fd0 = -1, fd1 = -1;
5373 0 : const char *p, *v = value;
5374 : size_t n;
5375 :
5376 0 : assert(m);
5377 0 : assert(value);
5378 0 : assert(fds);
5379 :
5380 0 : n = strcspn(v, " ");
5381 0 : id = strndupa(v, n);
5382 0 : if (v[n] != ' ')
5383 0 : goto finalize;
5384 0 : p = v + n + 1;
5385 :
5386 0 : v = startswith(p, "tmp-dir=");
5387 0 : if (v) {
5388 0 : n = strcspn(v, " ");
5389 0 : tmp_dir = strndupa(v, n);
5390 0 : if (v[n] != ' ')
5391 0 : goto finalize;
5392 0 : p = v + n + 1;
5393 : }
5394 :
5395 0 : v = startswith(p, "var-tmp-dir=");
5396 0 : if (v) {
5397 0 : n = strcspn(v, " ");
5398 0 : var_tmp_dir = strndupa(v, n);
5399 0 : if (v[n] != ' ')
5400 0 : goto finalize;
5401 0 : p = v + n + 1;
5402 : }
5403 :
5404 0 : v = startswith(p, "netns-socket-0=");
5405 0 : if (v) {
5406 : char *buf;
5407 :
5408 0 : n = strcspn(v, " ");
5409 0 : buf = strndupa(v, n);
5410 0 : if (safe_atoi(buf, &fd0) < 0 || !fdset_contains(fds, fd0)) {
5411 0 : log_debug("Unable to process exec-runtime netns fd specification.");
5412 0 : return;
5413 : }
5414 0 : fd0 = fdset_remove(fds, fd0);
5415 0 : if (v[n] != ' ')
5416 0 : goto finalize;
5417 0 : p = v + n + 1;
5418 : }
5419 :
5420 0 : v = startswith(p, "netns-socket-1=");
5421 0 : if (v) {
5422 : char *buf;
5423 :
5424 0 : n = strcspn(v, " ");
5425 0 : buf = strndupa(v, n);
5426 0 : if (safe_atoi(buf, &fd1) < 0 || !fdset_contains(fds, fd1)) {
5427 0 : log_debug("Unable to process exec-runtime netns fd specification.");
5428 0 : return;
5429 : }
5430 0 : fd1 = fdset_remove(fds, fd1);
5431 : }
5432 :
5433 0 : finalize:
5434 :
5435 0 : r = exec_runtime_add(m, id, tmp_dir, var_tmp_dir, (int[]) { fd0, fd1 }, NULL);
5436 0 : if (r < 0)
5437 0 : log_debug_errno(r, "Failed to add exec-runtime: %m");
5438 : }
5439 :
5440 27 : void exec_runtime_vacuum(Manager *m) {
5441 : ExecRuntime *rt;
5442 : Iterator i;
5443 :
5444 27 : assert(m);
5445 :
5446 : /* Free unreferenced ExecRuntime objects. This is used after manager deserialization process. */
5447 :
5448 27 : HASHMAP_FOREACH(rt, m->exec_runtime_by_id, i) {
5449 0 : if (rt->n_ref > 0)
5450 0 : continue;
5451 :
5452 0 : (void) exec_runtime_free(rt, false);
5453 : }
5454 27 : }
5455 :
5456 6 : void exec_params_clear(ExecParameters *p) {
5457 6 : if (!p)
5458 0 : return;
5459 :
5460 6 : strv_free(p->environment);
5461 : }
5462 :
5463 : static const char* const exec_input_table[_EXEC_INPUT_MAX] = {
5464 : [EXEC_INPUT_NULL] = "null",
5465 : [EXEC_INPUT_TTY] = "tty",
5466 : [EXEC_INPUT_TTY_FORCE] = "tty-force",
5467 : [EXEC_INPUT_TTY_FAIL] = "tty-fail",
5468 : [EXEC_INPUT_SOCKET] = "socket",
5469 : [EXEC_INPUT_NAMED_FD] = "fd",
5470 : [EXEC_INPUT_DATA] = "data",
5471 : [EXEC_INPUT_FILE] = "file",
5472 : };
5473 :
5474 191 : DEFINE_STRING_TABLE_LOOKUP(exec_input, ExecInput);
5475 :
5476 : static const char* const exec_output_table[_EXEC_OUTPUT_MAX] = {
5477 : [EXEC_OUTPUT_INHERIT] = "inherit",
5478 : [EXEC_OUTPUT_NULL] = "null",
5479 : [EXEC_OUTPUT_TTY] = "tty",
5480 : [EXEC_OUTPUT_SYSLOG] = "syslog",
5481 : [EXEC_OUTPUT_SYSLOG_AND_CONSOLE] = "syslog+console",
5482 : [EXEC_OUTPUT_KMSG] = "kmsg",
5483 : [EXEC_OUTPUT_KMSG_AND_CONSOLE] = "kmsg+console",
5484 : [EXEC_OUTPUT_JOURNAL] = "journal",
5485 : [EXEC_OUTPUT_JOURNAL_AND_CONSOLE] = "journal+console",
5486 : [EXEC_OUTPUT_SOCKET] = "socket",
5487 : [EXEC_OUTPUT_NAMED_FD] = "fd",
5488 : [EXEC_OUTPUT_FILE] = "file",
5489 : [EXEC_OUTPUT_FILE_APPEND] = "append",
5490 : };
5491 :
5492 372 : DEFINE_STRING_TABLE_LOOKUP(exec_output, ExecOutput);
5493 :
5494 : static const char* const exec_utmp_mode_table[_EXEC_UTMP_MODE_MAX] = {
5495 : [EXEC_UTMP_INIT] = "init",
5496 : [EXEC_UTMP_LOGIN] = "login",
5497 : [EXEC_UTMP_USER] = "user",
5498 : };
5499 :
5500 10 : DEFINE_STRING_TABLE_LOOKUP(exec_utmp_mode, ExecUtmpMode);
5501 :
5502 : static const char* const exec_preserve_mode_table[_EXEC_PRESERVE_MODE_MAX] = {
5503 : [EXEC_PRESERVE_NO] = "no",
5504 : [EXEC_PRESERVE_YES] = "yes",
5505 : [EXEC_PRESERVE_RESTART] = "restart",
5506 : };
5507 :
5508 181 : DEFINE_STRING_TABLE_LOOKUP_WITH_BOOLEAN(exec_preserve_mode, ExecPreserveMode, EXEC_PRESERVE_YES);
5509 :
5510 : /* This table maps ExecDirectoryType to the setting it is configured with in the unit */
5511 : static const char* const exec_directory_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5512 : [EXEC_DIRECTORY_RUNTIME] = "RuntimeDirectory",
5513 : [EXEC_DIRECTORY_STATE] = "StateDirectory",
5514 : [EXEC_DIRECTORY_CACHE] = "CacheDirectory",
5515 : [EXEC_DIRECTORY_LOGS] = "LogsDirectory",
5516 : [EXEC_DIRECTORY_CONFIGURATION] = "ConfigurationDirectory",
5517 : };
5518 :
5519 869 : DEFINE_STRING_TABLE_LOOKUP(exec_directory_type, ExecDirectoryType);
5520 :
5521 : /* And this table maps ExecDirectoryType too, but to a generic term identifying the type of resource. This
5522 : * one is supposed to be generic enough to be used for unit types that don't use ExecContext and per-unit
5523 : * directories, specifically .timer units with their timestamp touch file. */
5524 : static const char* const exec_resource_type_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5525 : [EXEC_DIRECTORY_RUNTIME] = "runtime",
5526 : [EXEC_DIRECTORY_STATE] = "state",
5527 : [EXEC_DIRECTORY_CACHE] = "cache",
5528 : [EXEC_DIRECTORY_LOGS] = "logs",
5529 : [EXEC_DIRECTORY_CONFIGURATION] = "configuration",
5530 : };
5531 :
5532 0 : DEFINE_STRING_TABLE_LOOKUP(exec_resource_type, ExecDirectoryType);
5533 :
5534 : /* And this table also maps ExecDirectoryType, to the environment variable we pass the selected directory to
5535 : * the service payload in. */
5536 : static const char* const exec_directory_env_name_table[_EXEC_DIRECTORY_TYPE_MAX] = {
5537 : [EXEC_DIRECTORY_RUNTIME] = "RUNTIME_DIRECTORY",
5538 : [EXEC_DIRECTORY_STATE] = "STATE_DIRECTORY",
5539 : [EXEC_DIRECTORY_CACHE] = "CACHE_DIRECTORY",
5540 : [EXEC_DIRECTORY_LOGS] = "LOGS_DIRECTORY",
5541 : [EXEC_DIRECTORY_CONFIGURATION] = "CONFIGURATION_DIRECTORY",
5542 : };
5543 :
5544 0 : DEFINE_PRIVATE_STRING_TABLE_LOOKUP_TO_STRING(exec_directory_env_name, ExecDirectoryType);
5545 :
5546 : static const char* const exec_keyring_mode_table[_EXEC_KEYRING_MODE_MAX] = {
5547 : [EXEC_KEYRING_INHERIT] = "inherit",
5548 : [EXEC_KEYRING_PRIVATE] = "private",
5549 : [EXEC_KEYRING_SHARED] = "shared",
5550 : };
5551 :
5552 181 : DEFINE_STRING_TABLE_LOOKUP(exec_keyring_mode, ExecKeyringMode);
|