Line data Source code
1 : /* SPDX-License-Identifier: LGPL-2.1+ */
2 :
3 : #include <grp.h>
4 : #include <pwd.h>
5 : #include <sys/file.h>
6 : #include <sys/stat.h>
7 : #include <sys/types.h>
8 :
9 : #include "clean-ipc.h"
10 : #include "dynamic-user.h"
11 : #include "fd-util.h"
12 : #include "fileio.h"
13 : #include "format-util.h"
14 : #include "fs-util.h"
15 : #include "io-util.h"
16 : #include "nscd-flush.h"
17 : #include "parse-util.h"
18 : #include "random-util.h"
19 : #include "serialize.h"
20 : #include "socket-util.h"
21 : #include "stdio-util.h"
22 : #include "string-util.h"
23 : #include "strv.h"
24 : #include "user-util.h"
25 :
26 : /* Takes a value generated randomly or by hashing and turns it into a UID in the right range */
27 : #define UID_CLAMP_INTO_RANGE(rnd) (((uid_t) (rnd) % (DYNAMIC_UID_MAX - DYNAMIC_UID_MIN + 1)) + DYNAMIC_UID_MIN)
28 :
29 0 : DEFINE_PRIVATE_TRIVIAL_REF_FUNC(DynamicUser, dynamic_user);
30 :
31 0 : static DynamicUser* dynamic_user_free(DynamicUser *d) {
32 0 : if (!d)
33 0 : return NULL;
34 :
35 0 : if (d->manager)
36 0 : (void) hashmap_remove(d->manager->dynamic_users, d->name);
37 :
38 0 : safe_close_pair(d->storage_socket);
39 0 : return mfree(d);
40 : }
41 :
42 0 : static int dynamic_user_add(Manager *m, const char *name, int storage_socket[static 2], DynamicUser **ret) {
43 : DynamicUser *d;
44 : int r;
45 :
46 0 : assert(m);
47 0 : assert(name);
48 0 : assert(storage_socket);
49 :
50 0 : r = hashmap_ensure_allocated(&m->dynamic_users, &string_hash_ops);
51 0 : if (r < 0)
52 0 : return r;
53 :
54 0 : d = malloc0(offsetof(DynamicUser, name) + strlen(name) + 1);
55 0 : if (!d)
56 0 : return -ENOMEM;
57 :
58 0 : strcpy(d->name, name);
59 :
60 0 : d->storage_socket[0] = storage_socket[0];
61 0 : d->storage_socket[1] = storage_socket[1];
62 :
63 0 : r = hashmap_put(m->dynamic_users, d->name, d);
64 0 : if (r < 0) {
65 0 : free(d);
66 0 : return r;
67 : }
68 :
69 0 : d->manager = m;
70 :
71 0 : if (ret)
72 0 : *ret = d;
73 :
74 0 : return 0;
75 : }
76 :
77 0 : static int dynamic_user_acquire(Manager *m, const char *name, DynamicUser** ret) {
78 0 : _cleanup_close_pair_ int storage_socket[2] = { -1, -1 };
79 : DynamicUser *d;
80 : int r;
81 :
82 0 : assert(m);
83 0 : assert(name);
84 :
85 : /* Return the DynamicUser structure for a specific user name. Note that this won't actually allocate a UID for
86 : * it, but just prepare the data structure for it. The UID is allocated only on demand, when it's really
87 : * needed, and in the child process we fork off, since allocation involves NSS checks which are not OK to do
88 : * from PID 1. To allow the children and PID 1 share information about allocated UIDs we use an anonymous
89 : * AF_UNIX/SOCK_DGRAM socket (called the "storage socket") that contains at most one datagram with the
90 : * allocated UID number, plus an fd referencing the lock file for the UID
91 : * (i.e. /run/systemd/dynamic-uid/$UID). Why involve the socket pair? So that PID 1 and all its children can
92 : * share the same storage for the UID and lock fd, simply by inheriting the storage socket fds. The socket pair
93 : * may exist in three different states:
94 : *
95 : * a) no datagram stored. This is the initial state. In this case the dynamic user was never realized.
96 : *
97 : * b) a datagram containing a UID stored, but no lock fd attached to it. In this case there was already a
98 : * statically assigned UID by the same name, which we are reusing.
99 : *
100 : * c) a datagram containing a UID stored, and a lock fd is attached to it. In this case we allocated a dynamic
101 : * UID and locked it in the file system, using the lock fd.
102 : *
103 : * As PID 1 and various children might access the socket pair simultaneously, and pop the datagram or push it
104 : * back in any time, we also maintain a lock on the socket pair. Note one peculiarity regarding locking here:
105 : * the UID lock on disk is protected via a BSD file lock (i.e. an fd-bound lock), so that the lock is kept in
106 : * place as long as there's a reference to the fd open. The lock on the storage socket pair however is a POSIX
107 : * file lock (i.e. a process-bound lock), as all users share the same fd of this (after all it is anonymous,
108 : * nobody else could get any access to it except via our own fd) and we want to synchronize access between all
109 : * processes that have access to it. */
110 :
111 0 : d = hashmap_get(m->dynamic_users, name);
112 0 : if (d) {
113 0 : if (ret) {
114 : /* We already have a structure for the dynamic user, let's increase the ref count and reuse it */
115 0 : d->n_ref++;
116 0 : *ret = d;
117 : }
118 0 : return 0;
119 : }
120 :
121 0 : if (!valid_user_group_name_or_id(name))
122 0 : return -EINVAL;
123 :
124 0 : if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, storage_socket) < 0)
125 0 : return -errno;
126 :
127 0 : r = dynamic_user_add(m, name, storage_socket, &d);
128 0 : if (r < 0)
129 0 : return r;
130 :
131 0 : storage_socket[0] = storage_socket[1] = -1;
132 :
133 0 : if (ret) {
134 0 : d->n_ref++;
135 0 : *ret = d;
136 : }
137 :
138 0 : return 1;
139 : }
140 :
141 0 : static int make_uid_symlinks(uid_t uid, const char *name, bool b) {
142 :
143 : char path1[STRLEN("/run/systemd/dynamic-uid/direct:") + DECIMAL_STR_MAX(uid_t) + 1];
144 : const char *path2;
145 0 : int r = 0, k;
146 :
147 : /* Add direct additional symlinks for direct lookups of dynamic UIDs and their names by userspace code. The
148 : * only reason we have this is because dbus-daemon cannot use D-Bus for resolving users and groups (since it
149 : * would be its own client then). We hence keep these world-readable symlinks in place, so that the
150 : * unprivileged dbus user can read the mappings when it needs them via these symlinks instead of having to go
151 : * via the bus. Ideally, we'd use the lock files we keep for this anyway, but we can't since we use BSD locks
152 : * on them and as those may be taken by any user with read access we can't make them world-readable. */
153 :
154 0 : xsprintf(path1, "/run/systemd/dynamic-uid/direct:" UID_FMT, uid);
155 0 : if (unlink(path1) < 0 && errno != ENOENT)
156 0 : r = -errno;
157 :
158 0 : if (b && symlink(name, path1) < 0) {
159 0 : k = log_warning_errno(errno, "Failed to symlink \"%s\": %m", path1);
160 0 : if (r == 0)
161 0 : r = k;
162 : }
163 :
164 0 : path2 = strjoina("/run/systemd/dynamic-uid/direct:", name);
165 0 : if (unlink(path2) < 0 && errno != ENOENT) {
166 0 : k = -errno;
167 0 : if (r == 0)
168 0 : r = k;
169 : }
170 :
171 0 : if (b && symlink(path1 + STRLEN("/run/systemd/dynamic-uid/direct:"), path2) < 0) {
172 0 : k = log_warning_errno(errno, "Failed to symlink \"%s\": %m", path2);
173 0 : if (r == 0)
174 0 : r = k;
175 : }
176 :
177 0 : return r;
178 : }
179 :
180 0 : static int pick_uid(char **suggested_paths, const char *name, uid_t *ret_uid) {
181 :
182 : /* Find a suitable free UID. We use the following strategy to find a suitable UID:
183 : *
184 : * 1. Initially, we try to read the UID of a number of specified paths. If any of these UIDs works, we use
185 : * them. We use in order to increase the chance of UID reuse, if StateDirectory=, CacheDirectory= or
186 : * LogsDirectory= are used, as reusing the UID these directories are owned by saves us from having to
187 : * recursively chown() them to new users.
188 : *
189 : * 2. If that didn't yield a currently unused UID, we hash the user name, and try to use that. This should be
190 : * pretty good, as the use ris by default derived from the unit name, and hence the same service and same
191 : * user should usually get the same UID as long as our hashing doesn't clash.
192 : *
193 : * 3. Finally, if that didn't work, we randomly pick UIDs, until we find one that is empty.
194 : *
195 : * Since the dynamic UID space is relatively small we'll stop trying after 100 iterations, giving up. */
196 :
197 : enum {
198 : PHASE_SUGGESTED, /* the first phase, reusing directory ownership UIDs */
199 : PHASE_HASHED, /* the second phase, deriving a UID from the username by hashing */
200 : PHASE_RANDOM, /* the last phase, randomly picking UIDs */
201 0 : } phase = PHASE_SUGGESTED;
202 :
203 : static const uint8_t hash_key[] = {
204 : 0x37, 0x53, 0x7e, 0x31, 0xcf, 0xce, 0x48, 0xf5,
205 : 0x8a, 0xbb, 0x39, 0x57, 0x8d, 0xd9, 0xec, 0x59
206 : };
207 :
208 0 : unsigned n_tries = 100, current_suggested = 0;
209 : int r;
210 :
211 0 : (void) mkdir("/run/systemd/dynamic-uid", 0755);
212 :
213 0 : for (;;) {
214 : char lock_path[STRLEN("/run/systemd/dynamic-uid/") + DECIMAL_STR_MAX(uid_t) + 1];
215 0 : _cleanup_close_ int lock_fd = -1;
216 : uid_t candidate;
217 : ssize_t l;
218 :
219 0 : if (--n_tries <= 0) /* Give up retrying eventually */
220 0 : return -EBUSY;
221 :
222 0 : switch (phase) {
223 :
224 0 : case PHASE_SUGGESTED: {
225 : struct stat st;
226 :
227 0 : if (!suggested_paths || !suggested_paths[current_suggested]) {
228 : /* We reached the end of the suggested paths list, let's try by hashing the name */
229 0 : phase = PHASE_HASHED;
230 0 : continue;
231 : }
232 :
233 0 : if (stat(suggested_paths[current_suggested++], &st) < 0)
234 0 : continue; /* We can't read the UID of this path, but that doesn't matter, just try the next */
235 :
236 0 : candidate = st.st_uid;
237 0 : break;
238 : }
239 :
240 0 : case PHASE_HASHED:
241 : /* A static user by this name does not exist yet. Let's find a free ID then, and use that. We
242 : * start with a UID generated as hash from the user name. */
243 0 : candidate = UID_CLAMP_INTO_RANGE(siphash24(name, strlen(name), hash_key));
244 :
245 : /* If this one fails, we should proceed with random tries */
246 0 : phase = PHASE_RANDOM;
247 0 : break;
248 :
249 0 : case PHASE_RANDOM:
250 :
251 : /* Pick another random UID, and see if that works for us. */
252 0 : random_bytes(&candidate, sizeof(candidate));
253 0 : candidate = UID_CLAMP_INTO_RANGE(candidate);
254 0 : break;
255 :
256 0 : default:
257 0 : assert_not_reached("unknown phase");
258 : }
259 :
260 : /* Make sure whatever we picked here actually is in the right range */
261 0 : if (!uid_is_dynamic(candidate))
262 0 : continue;
263 :
264 0 : xsprintf(lock_path, "/run/systemd/dynamic-uid/" UID_FMT, candidate);
265 :
266 0 : for (;;) {
267 : struct stat st;
268 :
269 0 : lock_fd = open(lock_path, O_CREAT|O_RDWR|O_NOFOLLOW|O_CLOEXEC|O_NOCTTY, 0600);
270 0 : if (lock_fd < 0)
271 0 : return -errno;
272 :
273 0 : r = flock(lock_fd, LOCK_EX|LOCK_NB); /* Try to get a BSD file lock on the UID lock file */
274 0 : if (r < 0) {
275 0 : if (IN_SET(errno, EBUSY, EAGAIN))
276 0 : goto next; /* already in use */
277 :
278 0 : return -errno;
279 : }
280 :
281 0 : if (fstat(lock_fd, &st) < 0)
282 0 : return -errno;
283 0 : if (st.st_nlink > 0)
284 0 : break;
285 :
286 : /* Oh, bummer, we got the lock, but the file was unlinked between the time we opened it and
287 : * got the lock. Close it, and try again. */
288 0 : lock_fd = safe_close(lock_fd);
289 : }
290 :
291 : /* Some superficial check whether this UID/GID might already be taken by some static user */
292 0 : if (getpwuid(candidate) ||
293 0 : getgrgid((gid_t) candidate) ||
294 0 : search_ipc(candidate, (gid_t) candidate) != 0) {
295 0 : (void) unlink(lock_path);
296 0 : continue;
297 : }
298 :
299 : /* Let's store the user name in the lock file, so that we can use it for looking up the username for a UID */
300 0 : l = pwritev(lock_fd,
301 0 : (struct iovec[2]) {
302 0 : IOVEC_INIT_STRING(name),
303 0 : IOVEC_INIT((char[1]) { '\n' }, 1),
304 : }, 2, 0);
305 0 : if (l < 0) {
306 0 : r = -errno;
307 0 : (void) unlink(lock_path);
308 0 : return r;
309 : }
310 :
311 0 : (void) ftruncate(lock_fd, l);
312 0 : (void) make_uid_symlinks(candidate, name, true); /* also add direct lookup symlinks */
313 :
314 0 : *ret_uid = candidate;
315 0 : return TAKE_FD(lock_fd);
316 :
317 0 : next:
318 : ;
319 : }
320 : }
321 :
322 0 : static int dynamic_user_pop(DynamicUser *d, uid_t *ret_uid, int *ret_lock_fd) {
323 0 : uid_t uid = UID_INVALID;
324 0 : struct iovec iov = IOVEC_INIT(&uid, sizeof(uid));
325 : int lock_fd;
326 : ssize_t k;
327 :
328 0 : assert(d);
329 0 : assert(ret_uid);
330 0 : assert(ret_lock_fd);
331 :
332 : /* Read the UID and lock fd that is stored in the storage AF_UNIX socket. This should be called with the lock
333 : * on the socket taken. */
334 :
335 0 : k = receive_one_fd_iov(d->storage_socket[0], &iov, 1, MSG_DONTWAIT, &lock_fd);
336 0 : if (k < 0)
337 0 : return (int) k;
338 :
339 0 : *ret_uid = uid;
340 0 : *ret_lock_fd = lock_fd;
341 :
342 0 : return 0;
343 : }
344 :
345 0 : static int dynamic_user_push(DynamicUser *d, uid_t uid, int lock_fd) {
346 0 : struct iovec iov = IOVEC_INIT(&uid, sizeof(uid));
347 :
348 0 : assert(d);
349 :
350 : /* Store the UID and lock_fd in the storage socket. This should be called with the socket pair lock taken. */
351 0 : return send_one_fd_iov(d->storage_socket[1], lock_fd, &iov, 1, MSG_DONTWAIT);
352 : }
353 :
354 0 : static void unlink_uid_lock(int lock_fd, uid_t uid, const char *name) {
355 : char lock_path[STRLEN("/run/systemd/dynamic-uid/") + DECIMAL_STR_MAX(uid_t) + 1];
356 :
357 0 : if (lock_fd < 0)
358 0 : return;
359 :
360 0 : xsprintf(lock_path, "/run/systemd/dynamic-uid/" UID_FMT, uid);
361 0 : (void) unlink(lock_path);
362 :
363 0 : (void) make_uid_symlinks(uid, name, false); /* remove direct lookup symlinks */
364 : }
365 :
366 0 : static int lockfp(int fd, int *fd_lock) {
367 0 : if (lockf(fd, F_LOCK, 0) < 0)
368 0 : return -errno;
369 0 : *fd_lock = fd;
370 0 : return 0;
371 : }
372 :
373 0 : static void unlockfp(int *fd_lock) {
374 0 : if (*fd_lock < 0)
375 0 : return;
376 0 : lockf(*fd_lock, F_ULOCK, 0);
377 0 : *fd_lock = -1;
378 : }
379 :
380 0 : static int dynamic_user_realize(
381 : DynamicUser *d,
382 : char **suggested_dirs,
383 : uid_t *ret_uid, gid_t *ret_gid,
384 : bool is_user) {
385 :
386 0 : _cleanup_(unlockfp) int storage_socket0_lock = -1;
387 0 : _cleanup_close_ int uid_lock_fd = -1;
388 0 : _cleanup_close_ int etc_passwd_lock_fd = -1;
389 0 : uid_t num = UID_INVALID; /* a uid if is_user, and a gid otherwise */
390 0 : gid_t gid = GID_INVALID; /* a gid if is_user, ignored otherwise */
391 0 : bool flush_cache = false;
392 : int r;
393 :
394 0 : assert(d);
395 0 : assert(is_user == !!ret_uid);
396 0 : assert(ret_gid);
397 :
398 : /* Acquire a UID for the user name. This will allocate a UID for the user name if the user doesn't exist
399 : * yet. If it already exists its existing UID/GID will be reused. */
400 :
401 0 : r = lockfp(d->storage_socket[0], &storage_socket0_lock);
402 0 : if (r < 0)
403 0 : return r;
404 :
405 0 : r = dynamic_user_pop(d, &num, &uid_lock_fd);
406 0 : if (r < 0) {
407 : int new_uid_lock_fd;
408 : uid_t new_uid;
409 :
410 0 : if (r != -EAGAIN)
411 0 : return r;
412 :
413 : /* OK, nothing stored yet, let's try to find something useful. While we are working on this release the
414 : * lock however, so that nobody else blocks on our NSS lookups. */
415 0 : unlockfp(&storage_socket0_lock);
416 :
417 : /* Let's see if a proper, static user or group by this name exists. Try to take the lock on
418 : * /etc/passwd, if that fails with EROFS then /etc is read-only. In that case it's fine if we don't
419 : * take the lock, given that users can't be added there anyway in this case. */
420 0 : etc_passwd_lock_fd = take_etc_passwd_lock(NULL);
421 0 : if (etc_passwd_lock_fd < 0 && etc_passwd_lock_fd != -EROFS)
422 0 : return etc_passwd_lock_fd;
423 :
424 : /* First, let's parse this as numeric UID */
425 0 : r = parse_uid(d->name, &num);
426 0 : if (r < 0) {
427 : struct passwd *p;
428 : struct group *g;
429 :
430 0 : if (is_user) {
431 : /* OK, this is not a numeric UID. Let's see if there's a user by this name */
432 0 : p = getpwnam(d->name);
433 0 : if (p) {
434 0 : num = p->pw_uid;
435 0 : gid = p->pw_gid;
436 : } else {
437 : /* if the user does not exist but the group with the same name exists, refuse operation */
438 0 : g = getgrnam(d->name);
439 0 : if (g)
440 0 : return -EILSEQ;
441 : }
442 : } else {
443 : /* Let's see if there's a group by this name */
444 0 : g = getgrnam(d->name);
445 0 : if (g)
446 0 : num = (uid_t) g->gr_gid;
447 : else {
448 : /* if the group does not exist but the user with the same name exists, refuse operation */
449 0 : p = getpwnam(d->name);
450 0 : if (p)
451 0 : return -EILSEQ;
452 : }
453 : }
454 : }
455 :
456 0 : if (num == UID_INVALID) {
457 : /* No static UID assigned yet, excellent. Let's pick a new dynamic one, and lock it. */
458 :
459 0 : uid_lock_fd = pick_uid(suggested_dirs, d->name, &num);
460 0 : if (uid_lock_fd < 0)
461 0 : return uid_lock_fd;
462 : }
463 :
464 : /* So, we found a working UID/lock combination. Let's see if we actually still need it. */
465 0 : r = lockfp(d->storage_socket[0], &storage_socket0_lock);
466 0 : if (r < 0) {
467 0 : unlink_uid_lock(uid_lock_fd, num, d->name);
468 0 : return r;
469 : }
470 :
471 0 : r = dynamic_user_pop(d, &new_uid, &new_uid_lock_fd);
472 0 : if (r < 0) {
473 0 : if (r != -EAGAIN) {
474 : /* OK, something bad happened, let's get rid of the bits we acquired. */
475 0 : unlink_uid_lock(uid_lock_fd, num, d->name);
476 0 : return r;
477 : }
478 :
479 : /* Great! Nothing is stored here, still. Store our newly acquired data. */
480 0 : flush_cache = true;
481 : } else {
482 : /* Hmm, so as it appears there's now something stored in the storage socket. Throw away what we
483 : * acquired, and use what's stored now. */
484 :
485 0 : unlink_uid_lock(uid_lock_fd, num, d->name);
486 0 : safe_close(uid_lock_fd);
487 :
488 0 : num = new_uid;
489 0 : uid_lock_fd = new_uid_lock_fd;
490 : }
491 0 : } else if (is_user && !uid_is_dynamic(num)) {
492 : struct passwd *p;
493 :
494 : /* Statically allocated user may have different uid and gid. So, let's obtain the gid. */
495 0 : errno = 0;
496 0 : p = getpwuid(num);
497 0 : if (!p)
498 0 : return errno_or_else(ESRCH);
499 :
500 0 : gid = p->pw_gid;
501 : }
502 :
503 : /* If the UID/GID was already allocated dynamically, push the data we popped out back in. If it was already
504 : * allocated statically, push the UID back too, but do not push the lock fd in. If we allocated the UID
505 : * dynamically right here, push that in along with the lock fd for it. */
506 0 : r = dynamic_user_push(d, num, uid_lock_fd);
507 0 : if (r < 0)
508 0 : return r;
509 :
510 0 : if (flush_cache) {
511 : /* If we allocated a new dynamic UID, refresh nscd, so that it forgets about potentially cached
512 : * negative entries. But let's do so after we release the /etc/passwd lock, so that there's no
513 : * potential for nscd wanting to lock that for completing the invalidation. */
514 0 : etc_passwd_lock_fd = safe_close(etc_passwd_lock_fd);
515 0 : (void) nscd_flush_cache(STRV_MAKE("passwd", "group"));
516 : }
517 :
518 0 : if (is_user) {
519 0 : *ret_uid = num;
520 0 : *ret_gid = gid != GID_INVALID ? gid : num;
521 : } else
522 0 : *ret_gid = num;
523 :
524 0 : return 0;
525 : }
526 :
527 0 : int dynamic_user_current(DynamicUser *d, uid_t *ret) {
528 0 : _cleanup_(unlockfp) int storage_socket0_lock = -1;
529 0 : _cleanup_close_ int lock_fd = -1;
530 : uid_t uid;
531 : int r;
532 :
533 0 : assert(d);
534 0 : assert(ret);
535 :
536 : /* Get the currently assigned UID for the user, if there's any. This simply pops the data from the storage socket, and pushes it back in right-away. */
537 :
538 0 : r = lockfp(d->storage_socket[0], &storage_socket0_lock);
539 0 : if (r < 0)
540 0 : return r;
541 :
542 0 : r = dynamic_user_pop(d, &uid, &lock_fd);
543 0 : if (r < 0)
544 0 : return r;
545 :
546 0 : r = dynamic_user_push(d, uid, lock_fd);
547 0 : if (r < 0)
548 0 : return r;
549 :
550 0 : *ret = uid;
551 0 : return 0;
552 : }
553 :
554 1118 : static DynamicUser* dynamic_user_unref(DynamicUser *d) {
555 1118 : if (!d)
556 1118 : return NULL;
557 :
558 : /* Note that this doesn't actually release any resources itself. If a dynamic user should be fully destroyed
559 : * and its UID released, use dynamic_user_destroy() instead. NB: the dynamic user table may contain entries
560 : * with no references, which is commonly the case right before a daemon reload. */
561 :
562 0 : assert(d->n_ref > 0);
563 0 : d->n_ref--;
564 :
565 0 : return NULL;
566 : }
567 :
568 0 : static int dynamic_user_close(DynamicUser *d) {
569 0 : _cleanup_(unlockfp) int storage_socket0_lock = -1;
570 0 : _cleanup_close_ int lock_fd = -1;
571 : uid_t uid;
572 : int r;
573 :
574 : /* Release the user ID, by releasing the lock on it, and emptying the storage socket. After this the user is
575 : * unrealized again, much like it was after it the DynamicUser object was first allocated. */
576 :
577 0 : r = lockfp(d->storage_socket[0], &storage_socket0_lock);
578 0 : if (r < 0)
579 0 : return r;
580 :
581 0 : r = dynamic_user_pop(d, &uid, &lock_fd);
582 0 : if (r == -EAGAIN)
583 : /* User wasn't realized yet, nothing to do. */
584 0 : return 0;
585 0 : if (r < 0)
586 0 : return r;
587 :
588 : /* This dynamic user was realized and dynamically allocated. In this case, let's remove the lock file. */
589 0 : unlink_uid_lock(lock_fd, uid, d->name);
590 :
591 0 : (void) nscd_flush_cache(STRV_MAKE("passwd", "group"));
592 0 : return 1;
593 : }
594 :
595 0 : static DynamicUser* dynamic_user_destroy(DynamicUser *d) {
596 0 : if (!d)
597 0 : return NULL;
598 :
599 : /* Drop a reference to a DynamicUser object, and destroy the user completely if this was the last
600 : * reference. This is called whenever a service is shut down and wants its dynamic UID gone. Note that
601 : * dynamic_user_unref() is what is called whenever a service is simply freed, for example during a reload
602 : * cycle, where the dynamic users should not be destroyed, but our datastructures should. */
603 :
604 0 : dynamic_user_unref(d);
605 :
606 0 : if (d->n_ref > 0)
607 0 : return NULL;
608 :
609 0 : (void) dynamic_user_close(d);
610 0 : return dynamic_user_free(d);
611 : }
612 :
613 0 : int dynamic_user_serialize(Manager *m, FILE *f, FDSet *fds) {
614 : DynamicUser *d;
615 : Iterator i;
616 :
617 0 : assert(m);
618 0 : assert(f);
619 0 : assert(fds);
620 :
621 : /* Dump the dynamic user database into the manager serialization, to deal with daemon reloads. */
622 :
623 0 : HASHMAP_FOREACH(d, m->dynamic_users, i) {
624 : int copy0, copy1;
625 :
626 0 : copy0 = fdset_put_dup(fds, d->storage_socket[0]);
627 0 : if (copy0 < 0)
628 0 : return log_error_errno(copy0, "Failed to add dynamic user storage fd to serialization: %m");
629 :
630 0 : copy1 = fdset_put_dup(fds, d->storage_socket[1]);
631 0 : if (copy1 < 0)
632 0 : return log_error_errno(copy1, "Failed to add dynamic user storage fd to serialization: %m");
633 :
634 0 : (void) serialize_item_format(f, "dynamic-user", "%s %i %i", d->name, copy0, copy1);
635 : }
636 :
637 0 : return 0;
638 : }
639 :
640 0 : void dynamic_user_deserialize_one(Manager *m, const char *value, FDSet *fds) {
641 0 : _cleanup_free_ char *name = NULL, *s0 = NULL, *s1 = NULL;
642 : int r, fd0, fd1;
643 :
644 0 : assert(m);
645 0 : assert(value);
646 0 : assert(fds);
647 :
648 : /* Parse the serialization again, after a daemon reload */
649 :
650 0 : r = extract_many_words(&value, NULL, 0, &name, &s0, &s1, NULL);
651 0 : if (r != 3 || !isempty(value)) {
652 0 : log_debug("Unable to parse dynamic user line.");
653 0 : return;
654 : }
655 :
656 0 : if (safe_atoi(s0, &fd0) < 0 || !fdset_contains(fds, fd0)) {
657 0 : log_debug("Unable to process dynamic user fd specification.");
658 0 : return;
659 : }
660 :
661 0 : if (safe_atoi(s1, &fd1) < 0 || !fdset_contains(fds, fd1)) {
662 0 : log_debug("Unable to process dynamic user fd specification.");
663 0 : return;
664 : }
665 :
666 0 : r = dynamic_user_add(m, name, (int[]) { fd0, fd1 }, NULL);
667 0 : if (r < 0) {
668 0 : log_debug_errno(r, "Failed to add dynamic user: %m");
669 0 : return;
670 : }
671 :
672 0 : (void) fdset_remove(fds, fd0);
673 0 : (void) fdset_remove(fds, fd1);
674 : }
675 :
676 27 : void dynamic_user_vacuum(Manager *m, bool close_user) {
677 : DynamicUser *d;
678 : Iterator i;
679 :
680 27 : assert(m);
681 :
682 : /* Empty the dynamic user database, optionally cleaning up orphaned dynamic users, i.e. destroy and free users
683 : * to which no reference exist. This is called after a daemon reload finished, in order to destroy users which
684 : * might not be referenced anymore. */
685 :
686 27 : HASHMAP_FOREACH(d, m->dynamic_users, i) {
687 0 : if (d->n_ref > 0)
688 0 : continue;
689 :
690 0 : if (close_user) {
691 0 : log_debug("Removing orphaned dynamic user %s", d->name);
692 0 : (void) dynamic_user_close(d);
693 : }
694 :
695 0 : dynamic_user_free(d);
696 : }
697 27 : }
698 :
699 0 : int dynamic_user_lookup_uid(Manager *m, uid_t uid, char **ret) {
700 : char lock_path[STRLEN("/run/systemd/dynamic-uid/") + DECIMAL_STR_MAX(uid_t) + 1];
701 0 : _cleanup_free_ char *user = NULL;
702 : uid_t check_uid;
703 : int r;
704 :
705 0 : assert(m);
706 0 : assert(ret);
707 :
708 : /* A friendly way to translate a dynamic user's UID into a name. */
709 0 : if (!uid_is_dynamic(uid))
710 0 : return -ESRCH;
711 :
712 0 : xsprintf(lock_path, "/run/systemd/dynamic-uid/" UID_FMT, uid);
713 0 : r = read_one_line_file(lock_path, &user);
714 0 : if (IN_SET(r, -ENOENT, 0))
715 0 : return -ESRCH;
716 0 : if (r < 0)
717 0 : return r;
718 :
719 : /* The lock file might be stale, hence let's verify the data before we return it */
720 0 : r = dynamic_user_lookup_name(m, user, &check_uid);
721 0 : if (r < 0)
722 0 : return r;
723 0 : if (check_uid != uid) /* lock file doesn't match our own idea */
724 0 : return -ESRCH;
725 :
726 0 : *ret = TAKE_PTR(user);
727 :
728 0 : return 0;
729 : }
730 :
731 0 : int dynamic_user_lookup_name(Manager *m, const char *name, uid_t *ret) {
732 : DynamicUser *d;
733 : int r;
734 :
735 0 : assert(m);
736 0 : assert(name);
737 0 : assert(ret);
738 :
739 : /* A friendly call for translating a dynamic user's name into its UID */
740 :
741 0 : d = hashmap_get(m->dynamic_users, name);
742 0 : if (!d)
743 0 : return -ESRCH;
744 :
745 0 : r = dynamic_user_current(d, ret);
746 0 : if (r == -EAGAIN) /* not realized yet? */
747 0 : return -ESRCH;
748 :
749 0 : return r;
750 : }
751 :
752 0 : int dynamic_creds_acquire(DynamicCreds *creds, Manager *m, const char *user, const char *group) {
753 0 : bool acquired = false;
754 : int r;
755 :
756 0 : assert(creds);
757 0 : assert(m);
758 :
759 : /* A DynamicUser object encapsulates an allocation of both a UID and a GID for a specific name. However, some
760 : * services use different user and groups. For cases like that there's DynamicCreds containing a pair of user
761 : * and group. This call allocates a pair. */
762 :
763 0 : if (!creds->user && user) {
764 0 : r = dynamic_user_acquire(m, user, &creds->user);
765 0 : if (r < 0)
766 0 : return r;
767 :
768 0 : acquired = true;
769 : }
770 :
771 0 : if (!creds->group) {
772 :
773 0 : if (creds->user && (!group || streq_ptr(user, group)))
774 0 : creds->group = dynamic_user_ref(creds->user);
775 : else {
776 0 : r = dynamic_user_acquire(m, group, &creds->group);
777 0 : if (r < 0) {
778 0 : if (acquired)
779 0 : creds->user = dynamic_user_unref(creds->user);
780 0 : return r;
781 : }
782 : }
783 : }
784 :
785 0 : return 0;
786 : }
787 :
788 0 : int dynamic_creds_realize(DynamicCreds *creds, char **suggested_paths, uid_t *uid, gid_t *gid) {
789 0 : uid_t u = UID_INVALID;
790 0 : gid_t g = GID_INVALID;
791 : int r;
792 :
793 0 : assert(creds);
794 0 : assert(uid);
795 0 : assert(gid);
796 :
797 : /* Realize both the referenced user and group */
798 :
799 0 : if (creds->user) {
800 0 : r = dynamic_user_realize(creds->user, suggested_paths, &u, &g, true);
801 0 : if (r < 0)
802 0 : return r;
803 : }
804 :
805 0 : if (creds->group && creds->group != creds->user) {
806 0 : r = dynamic_user_realize(creds->group, suggested_paths, NULL, &g, false);
807 0 : if (r < 0)
808 0 : return r;
809 : }
810 :
811 0 : *uid = u;
812 0 : *gid = g;
813 0 : return 0;
814 : }
815 :
816 559 : void dynamic_creds_unref(DynamicCreds *creds) {
817 559 : assert(creds);
818 :
819 559 : creds->user = dynamic_user_unref(creds->user);
820 559 : creds->group = dynamic_user_unref(creds->group);
821 559 : }
822 :
823 0 : void dynamic_creds_destroy(DynamicCreds *creds) {
824 0 : assert(creds);
825 :
826 0 : creds->user = dynamic_user_destroy(creds->user);
827 0 : creds->group = dynamic_user_destroy(creds->group);
828 0 : }
|